We develop a theoretic description of the photogalvanic current induced by a high frequency radiation in asymmetric nanostructures and show that it describes well the results of numerical simulations. Our studies allow to understand the origin of the electronic ratchet transport in such systems and show that they can be used for creation of new types of detectors operating at room temperature in a terahertz radiation range.PACS. 72.40.+w Photoconduction and photovoltaic effects -73.63.-b Electronic transport in nanoscale materials and structures -05.45.Ac Low-dimensional chaos
We show that the optical excitation of graphene with polarized light leads to
the pure valley current where carriers in the valleys counterflow. The current
in each valley originates from asymmetry of optical transitions and electron
scattering by impurities owing to the warping of electron energy spectrum. The
valley current has strong polarization dependence, its direction is opposite
for normally incident beams of orthogonal linear polarizations. In undoped
graphene on a substrate with high susceptibility, electron-electron scattering
leads to an additional contribution to the valley current that can dominate.Comment: 4+ pages, 2 figure
Abstract. Spin-orbit (SO) interaction of electrons confined near the curved semiconductor surface is studied. The curvature of surface determines the new mechanism of SO interaction which complements the known mechanisms occurring in planar systems. The specific cases of nanosphere and nanotube are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.