Purpose:
Glaucoma is one of the preeminent causes of incurable visual disability and blindness across the world due to elevated intraocular pressure within the eyes. Accurate and timely diagnosis is essential for preventing visual disability. Manual detection of glaucoma is a challenging task that needs expertise and years of experience.
Methods:
In this paper, we suggest a powerful and accurate algorithm using a convolutional neural network (CNN) for the automatic diagnosis of glaucoma. In this work, 1113 fundus images consisting of 660 normal and 453 glaucomatous images from four databases have been used for the diagnosis of glaucoma. A 13-layer CNN is potently trained from this dataset to mine vital features, and these features are classified into either glaucomatous or normal class during testing. The proposed algorithm is implemented in Google Colab, which made the task straightforward without spending hours installing the environment and supporting libraries. To evaluate the effectiveness of our algorithm, the dataset is divided into 70% for training, 20% for validation, and the remaining 10% utilized for testing. The training images are augmented to 12012 fundus images.
Results:
Our model with SoftMax classifier achieved an accuracy of 93.86%, sensitivity of 85.42%, specificity of 100%, and precision of 100%. In contrast, the model with the SVM classifier achieved accuracy, sensitivity, specificity, and precision of 95.61, 89.58, 100, and 100%, respectively.
Conclusion:
These results demonstrate the ability of the deep learning model to identify glaucoma from fundus images and suggest that the proposed system can help ophthalmologists in a fast, accurate, and reliable diagnosis of glaucoma.
Genetic algorithms (GA) are often well suited for optimisation problems involving several conflicting objectives. It is more suitable to model the protein structure prediction problem as a multi-objective optimisation problem since the potential energy functions used in the literature to evaluate the conformation of a protein are based on the calculations of two different interaction energies: local (bond atoms) and non-local (non-bond atoms) and experiments have shown that those types of interactions are in conflict, by using the potential energy function, Chemistry at Harvard Macromolecular Mechanics. In this paper, we have modified the immune inspired Pareto archived evolutionary strategy (I-PAES) algorithm and denoted it as MI-PAES. It can effectively exploit some prior knowledge about the hydrophobic interactions, which is one of the most important driving forces in protein folding to make vaccines. The proposed MI-PAES is comparable with other evolutionary algorithms proposed in literature, both in terms of best solution found and the computational time and often results in much better search ability than that of the canonical GA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.