Rationale
The mass spectra of amine thermal ionization on intermetallic NaAux emitters differ significantly from those of the same compounds on the surfaces of transition metals and their oxides. The factors underlying these differences are determined through studying the processes taking place on intermetallic surfaces, which give rise to the corresponding mass spectra.
Methods
The dependence of mass spectral composition and individual line intensity of diethylamine thermal ionization on intermetallic NaAux surface on diethylamine pressure, oxygen, sodium atom current and emitter temperature was studied using a magnet sector mass spectrometer.
Results
Diethylamine mass spectral composition is determined by the reaction between the molecules adsorbed on the NaAux surface. Oxygen and sodium concentration on the surface does not affect the mass spectral composition. Mass line intensity depends on diethylamine pressure and emitter temperature affecting the reaction efficiency on the surface.
Conclusions
Intermetallic NaAux is an ionic semiconductor that can provide sufficient lifetime for adsorbed molecules to efficiently interact with each other and with their decomposition products. This creates unique conditions for the formation of various compounds on the surface with their mass exceeding by 2.5 times that of diethylamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.