Tinoridine is a nonsteroidal anti-inflammatory drug and also has potent radical scavenger and antiperoxidative activity. However, metabolism of tinoridine has not been thoroughly investigated. To identify in vivo metabolites, the drug was administered to Sprague-Dawley rats (n = 5) at a dose of 20 mg kg(-1), and blood, urine and feces were collected at different time points up to 24 h. In vitro metabolism was delved by incubating the drug with rat liver microsomes and human liver microsomes. The metabolites were enriched by optimized sample preparation involving protein precipitation using acetonitrile, followed by solid-phase extraction. Data processes were carried out using multiple mass defects filters to eliminate false-positive ions. A total of 11 metabolites have been identified in urine samples including hydroxyl, dealkylated, acetylated and glucuronide metabolites; among them, some were also observed in plasma and feces samples. Only two major metabolites were formed using liver microsomal incubations. These metabolites were also observed in vivo. All the 11 metabolites, which are hitherto unknown and novel, were characterized by using ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry in combination with accurate mass measurements. Finally, in silico toxicological screening of all metabolites was evaluated, and two metabolites were proposed to show a certain degree of lung or liver toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.