The subcommissural organ of vertebrates secretes glycoproteins into the third ventricle that condense to form Reissner's fiber (RF). Antibodies raised against the bovine RF-glycoproteins reacted with the floor plate (FP) cells of two teleost (Oncorhynchus kisutch, Sparus aurata) and two amphibian (Xenopus laevis, Batrachyla taeniata) species. At the ultrastructural level, the immunoreactivity was confined to secretory granules, mainly concentrated at the apical cell pole. In the rostro-caudal axis, a clear zonation of the FP was distinguished, with the hindbrain FP being the most, or the only (Batrachyla taeniata), immunoreactive region of the FP. In all the species studied, the caudal FP lacked immunoreactivity. Both the chemical nature of the immunoreactive material and the rostro-caudal zonation of the FP appear to be conservative features. Evidence was obtained that the FP secretes into the cerebrospinal fluid a material chemically related to the RF-glycoproteins secreted by the subcommissural organ. Thus, in addition to being the source of contact-mediated and diffusible signals, the FP might also secrete compounds into the cerebrospinal fluid that may act on distant targets.
Mulinia edulis and Mytilus chilensis are suspension-feeding bivalves with homorhabdic gills that live in diVerent sedimentary habitats in the lower and upper intertidal, respectively, in Yaldad Bay, Chile. They are faced with diVerent suspended particle size distributions when feeding, and both eliminate most of the inorganic particles by pseudofaeces production. This study used histology, scanning and transmission electron microscopy, and video endoscopy to compare particle processing on the labial palps and the mechanisms of particle sorting, acceptance, and rejection in the two species. In both species, disaggregation of mucus-bound particles occurs on the plicate surface of the palps. Particles destined for ingestion pass anteriorly from crest to crest and reach the mouth via the palp acceptance tract. Those destined for rejection enter the troughs between the plicae and move ventrally to the palp rejection tract. The palps manipulate the pseudofaeces into a mucous ball, which is transferred to the mantle rejection tract. In Mulinia edulis (an infaunal, siphonate mactrid), the pseudofaeces are stored in a chamber at the base of the inhalant siphon until expelled by intermittent contraction of the siphon wall. In contrast, Mytilus chilensis (an epifaunal, non-siphonate mytilid) releases pseudofaeces continuously when submerged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.