Implementation of an artificial intelligencebased medical diagnosis tool for brain tumor classification, which is called the BTFSC-Net. Methods: Medical images are preprocessed using a hybrid probabilistic wiener filter (HPWF) The deep learning convolutional neural network (DLCNN) was utilized to fuse MRI and CT images with robust edge analysis (REA) properties, which are used to identify the slopes and edges of source images. Then, hybrid fuzzy c-means integrated k-means (HFCMIK) clustering is used to segment the disease affected region from the fused image. Further, hybrid features such as texture, colour, and low-level features are extracted from the fused image by using gray-level cooccurrence matrix (GLCM), redundant discrete wavelet transform (RDWT) descriptors. Finally, a deep learning based probabilistic neural network (DLPNN) is used to classify malignant and benign tumors. The BTFSC-Net attained 99.21% of segmentation accuracy and 99.46% of classification accuracy. Conclusions: The simulations showed that BTFSC-Net outperformed as compared to existing methods.
Advanced technology used for arithmetic computing application, comprises greater number of approximate multipliers and approximate adders. Truncation and Rounding-based Scalable Approximate Multiplier (TRSAM) distinguish a variety of modes based on height (h) and truncation (t) as TRSAM (h, t) in the architecture. This TRSAM operation produces higher absolute error in Least Significant Bit (LSB) data shift unit. A new scalable approximate multiplier approach that uses truncation and rounding TRSAM (3, 7) is proposed to increase the multiplier accuracy. With the help of foremost one bit architecture, the proposed scalable approximate multiplier approach reduces the partial products. The proposed approximate TRSAM multiplier architecture gives better results in terms of area, delay, and power. The accuracy of 95.2% and the energy utilization of 24.6 nJ is observed in the proposed multiplier design. The proposed approach shows 0.11%, 0.23%, and 0.24% less Mean Absolute Relative Error (MARE) when compared with the existing approach for the input of 8-bit, 16-bit, and 32-bit respectively. It also shows 0.13%, 0.19%, and 0.2% less Variance of Absolute Relative Error (VARE) when compared with the existing approach for the input of 8-bit, 16-bit, and 32-bit respectively. The proposed approach is implemented with Field-Programmable Gate Array (FPGA) and shows the delay of 3. 640, 6.481, 12.505, 22.572, and 36.893 ns for the input of 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit respectively. The proposed approach is applied in digital filters design which shows the Peak-Signal-to-Noise Ratio (PSNR) of 25.05 dB and Structural Similarity Index Measure (SSIM) of 0.98 with 393 pJ energy consumptions when used in image application. The proposed approach is simulated with Xilinx and MATLAB and implemented with FPGA.
The Thoracic Electrical Bioimpedance (TEB) helps to determine the stroke volume during cardiac arrest. While measuring cardiac signal it is contaminated with artifacts. The commonly encountered artifacts are Baseline wander (BW) and Muscle artifact (MA), these are physiological and nonstationary. As the nature of these artifacts is random, adaptive filtering is needed than conventional fixed coefficient filtering techniques. To address this, a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario. The proposed block least mean square (BLMS) algorithm is mathematically normalized with reference to data and error. This normalization leads, block normalized LMS (BNLMS) and block error normalized LMS (BENLMS) algorithms. Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals. The ability of these techniques is measured by calculating signal to noise ratio improvement (SNRI), Excess Mean Square Error (EMSE), and Misadjustment (M ad ). Among the considered algorithms, the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts. Hence, this adaptive artifact canceller is suitable for real time applications like wearable, remove health care monitoring units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.