Microtubules (MTs) are important cytoskeletal polymers engaged in a number of specific cellular activities including the traffic of organelles using motor proteins, cellular architecture and motility, cell division and a possible participation in information processing within neuronal functioning. How MTs operate and process electrical information is still largely unknown. In this paper we investigate the conditions enabling MTs to act as electrical transmission lines for ion flows along their lengths. We introduce a model in which each tubulin dimer is viewed as an electric element with a capacitive, inductive and resistive characteristics arising due to polyelectrolyte nature of MTs. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived and analyzed. We demonstrate that it can be used to describe the electrostatic potential coupled to the propagating localized ionic waves.
Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells.
A B S T R A C TWe here present a model of nonlinear dynamics of microtubules (MT) in the context of modified extended tanh-function (METHF) method. We rely on the ferroelectric model of MTs published earlier by Satarić et al [1] where the motion of MT subunits is reduced to a single longitudinal degree of freedom per dimer. It is shown that such nonlinear model can lead to existence of kink solitons moving along the MTs. An analytical solution of the basic equation, describing MT dynamics, was compared with the numerical one and a perfect agreement was demonstrated. It is now clearer how the values of the basic parameters of the model, proportional to viscosity and internal electric field, impact MT dynamics. Finally, we offer a possible scenario of how living cells utilize these kinks as signaling tools for regulation of cellular traffic as well as MT depolymerisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.