The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
The 1988-1990 eruption of Lonquimay Volcano, Chile (38° S) formed a 10.2 km long andesite lava with a volume of 0.23 km 3 over a period of 13 months. The lava extrusion rate decreased with time as chamber pressure and vent dimensions decreased. The velocity of the flow front decreased exponentially with distance from vent as a consequence of cooling and the increase of apparent viscosity at the flow front. The lava developed a central channel which decreased in width and depth with time. Three prominent lava levees were formed on each margin and resulted from abandonment as the channel decreased in width as a result of a rapid decrease of flow rate over the first 100 days of activity. A fourth major levee developed in February, during a brief period of flow rate increase down the main channel, but its walls were gradually exposed as the lava depth again decreased due to declining flow rate. The structure of lava levees depended on their age and longevity of the flow in the adjacent channel. Initial levees were formed in the first few days as the lava spread laterally and then retreated, leaving levees of massive lava. More mature rubble levees were formed during the next month by the lava pushing and then shearing aa and blocky breccia which formed on the cooling flow margin. Fragmentation and abrasion formed a characteristic zonation in the levees. A basal zone consists of very poorly sorted matrix-rich breccia with very rounded vesicular clasts and bimodal grain size distribution. The basal breccia zone strongly resembles block and ash flow deposits. This zone passes up into a zone of clast-supported clinker breccia which becomes increasingly matrix-poor and coarser with clasts becoming more angular upwards. The crest of the levee is composed of large (10-100 cm) angular to subangular blocks with no matrix. The zoned levees form after the active lava channel suddenly narrows. Lava depth initially increases and breccias are deposited on the channel margins and acquire the zoned structure by progressive shearing and accretion of clinkery aa breccia. The lava level then drops exposing the steep inner scarp of a levee. The most mature levee type formed in a long-lived channel over several months. The outer wall of the levee consists of zoned breccia, but the inner wall consists of a massive curving wall of strongly foliated lava with well-developed horizontal striations and ductile Reidel shears. The massive foliated facies is a consequence of prolonged flow which coats strongly sheared lava onto the inner levee wall. Scanning electron microscopy shows that the aa clinker clasts and foliated lava from the levee walls form at low melt fractions (<^ 15%). In the last three months of the eruption the flow front ceased to advance but thickened as lava drained from proximal regions and intruded into the interior of the distal lava. The last stages of lava movement were characterized by updoming in the central channel. A lava surface feature, named here 'Armadillo structure', was formed by deformation of the cooler but s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.