Abstract. Concurrent studies show vehicle platooning system as a promising approach for a new transportation system. The platooning strategy can be also applied to automated mobile robots. Including dynamic modelling in the simulation with kinematic model would yield a different result as the dynamic modelling would include the physical parameters of the mobile robot. The aim is to create a model that describes the motion of a robot that follows another robot based on predetermined distance. Dynamic model of the proposed mobile robot is simulated and the kinematic modelling was included in to simulate the motion of the mobile robot. PID controller will be used as a controller for robot's motion and platooning strategy. A reference distance is given as the input and the PID controller computes the error and sends input to the mobile robot in the form of voltage. The robot is able to follow the leader robot by maintaining a distance of one metre with a small deviation in the direction as the robot tends to move towards the left due to forces acting on the wheel. This method can be implemented in a human following mobile robot where the leader robot is replaced with a human user.
The dual axis solar tracker was designed for optimum solar cell implementation using dc-dc boost converter which controlled by fuzzy logic controller with the maximum power point tracking (MPPT) method. The objectives of this project are to track and optimize the maximum output power of the solar panel by designing and implementing the fuzzy logic controller using microcontroller as well as to regulate the output voltage of the solar panel using dc-dc boost converter. The photocell panel will detect the existing of sun and the surface plate of photocell panel will move horizontal and vertical axis depending on the value of LDR detected to follow the angular degree of sun in order to get maximum and best result of absorbing energy. The result obtained from the Arduino coding is the variation of duty cycle of PWM signal according to the voltage of solar panel. The final result obtained from dc-dc boost converter showed that the output voltage has been regulated. Data Acquisition System is done by using Arduino voltage sensor and current sensor to collect data for each second with the real time data graph. Overall, the designed system increases the efficiency of the solar panel based on experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.