Hyaluronic acid, as a natural linear polysaccharide, has attracted researchers’ attention from its initial detection and isolation from tissues in 1934 until the present day. Due to biocompatibility and a high biodegradation of hyaluronic acid, it finds wide application in bioengineering and biomedicine: from biorevitalizing skin cosmetics and endoprostheses of joint fluid to polymeric scaffolds and wound dressings. However, the main properties of aqueous polysaccharide solutions with different molecular weights are different. Moreover, the therapeutic effect of hyaluronic acid-based preparations directly depends on the molecular weight of the biopolymer. The present review collects the information about relations between the molecular weight of hyaluronic acid and its original properties. Particular emphasis is placed on the structural, physical and physico-chemical properties of hyaluronic acid in water solutions, as well as their degradability.
Human serum albumin (HSA) is the most abundant protein in blood plasma. HSA is involved in the transport of hormones, fatty acids, and some other compounds, maintenance of blood pH, osmotic pressure, and many other functions. Although this protein is well studied, data about its conformational changes upon different denaturation factors are fragmentary and sometimes contradictory. This is especially true for FTIR spectroscopy data interpretation. Here, the effect of various denaturing agents on the structural state of HSA by using FTIR spectroscopy in the aqueous solutions was systematically studied. Our data suggest that the second derivative deconvolution method provides the most consistent interpretation of the obtained IR spectra. The secondary structure changes of HSA were studied depending on the concentration of the denaturing agent during acid, alkaline, and thermal denaturation. In general, the denaturation of HSA in different conditions is accompanied by a decrease in α-helical conformation and an increase in random coil conformation and the intermolecular β-strands. Meantime, some variation in the conformational changes depending on the type of the denaturation agent were also observed. The increase of β-structural conformation suggests that HSA may form amyloid-like aggregates upon the denaturation.
This paper investigates the mechanical properties of oriented polyvinyl chloride (PVC) nanofiber mats, which, were obtained by electrospinning a PVC solution. PVC was dissolved in a solvent mixture of tetrahydrofuran/dimethylformamide. Electrospinning parameters used in our work were, voltage 20 kV; flow rate 0.5 mL/h; the distance between the syringe tip and collector was 15 cm. The rotating speed of the drum collector was varied from 500 to 2500 rpm with a range of 500 rpm. Nanofiber mats were characterized by scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry methods. The mechanical properties of PVC nanofiber mats, such as tensile strength, Young’s modulus, thermal degradation, and glass transition temperature were also analyzed. It was shown that, by increasing the collector’s rotation speed from 0 (flat plate collector) to 2500 rpm (drum collector), the average diameter of PVC nanofibers decreased from 313 ± 52 to 229 ± 47 nm. At the same time, it was observed that the mechanical properties of the resulting nanofiber mats were improved: tensile strength increased from 2.2 ± 0.2 MPa to 9.1 ± 0.3 MPa, Young’s modulus from 53 ± 14 to 308 ± 19 MPa. Thermogravimetric analysis measurements showed that there was no difference in the process of thermal degradation of nanofiber mats and PVC powders. On the other hand, the glass transition temperature of nanofiber mats and powders did show different values, such values were 77.5 °C and 83.2 °C, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.