Excessive fertilizer and manure phosphorus (P) inputs to soils elevates P in soil solution and surface runoff, which can lead to freshwater eutrophication. Runoff P can be related to soil test P and P sorption saturation, but these approaches are restricted to a limited range of soil types or are difficult to determine on a routine basis. The purpose of this study was to determine whether easily measurable soil characteristics were related to the soil phosphorus requirements (P(req), the amount of P sorbed at a particular solution P level). The P(req) was determined for 18 chemically diverse soils from sorption isotherm data (corrected for native sorbed P) and was found to be highly correlated to the sum of oxalate-extractable Al and Fe (R2 > 0.90). Native sorbed P, also determined from oxalate extraction, was subtracted from the P(req) to determine soil phosphorus limits (PL, the amount of P that can be added to soil to reach P(req)). Using this approach, the PL to reach 0.2 mg P L(-1) in solution ranged between -92 and 253 mg P kg(-1). Negative values identified soils with surplus P, while positive values showed soils with P deficiency. The results showed that P, Al, and Fe in oxalate extracts of soils held promise for determining PL to reach up to 10 mg P L(-1) in solution (leading to potential runoff from many soils). The soil oxalate extraction test could be integrated into existing best management practices for improving soil fertility and protecting water quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.