Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Casaretto, JA (reprint author), Univ Talca, Inst Biol Vegetal & Biotecnol, Talca, Chile.Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program
Advances in nanotechnology have enabled the development of nanoporous membranes based on carbon nanotubes, which, by virtue of their exceptional properties, constitute excellent supports for analytical processes, including the selective separation of some molecules.
Two analytical procedures, one based on purge-and-trap and the other on solid phase microextraction, both followed by GC-MS measurement using an ion-trap mass spectrometer in the electron impact mode, have been developed for determination and quantitation of up to 39 aroma compounds in fresh tomatoes. The method based on purge-and-trap for isolation of the volatile compounds uses Tenax as adsorbent and a hexane-diethyl ether mixture as solvent for elution. The method was validated for linearity, precision (better than 20% for most compounds), and limit of detection, which was approximately 1 ng g(-1). This method enabled identification of up to 30 compounds in real samples. Use of SPME was considered as an alternative, to simplify sample treatment while maintaining the information level for the samples (e.g. the number of compounds detected) and quality of quantitation. A procedure based on SPME using a Carboxen/polydimethylsiloxane fibre was developed and validated for determination of 29 aroma compounds; precision was better than 20% and limits of detection ranged from 4 to 30 ng g(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.