The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay, NALFIA). Prior to the detection with NALFIA, a rapid amplification method with tagged primers was applied. In the evaluation of the optimised NALFIA strips, no cross-reactivity was found for any of the antibodies used. The limit of detection was higher than for quantitative PCR (q-PCR), in most cases between 104 and 105 colony forming units/mL or 0.1–0.9 ng/μL DNA. NALFIA strips were applied to 48 isolates from cattle faeces, and results were compared to those achieved by q-PCR. E. coli virulence factors identified by NALFIA were in very good agreement with those observed in q-PCR, showing in most cases sensitivity and specificity values of 1.0 and an almost perfect agreement between both methods (kappa coefficient larger than 0.9). The results demonstrate that the screening method developed is reliable, cost-effective and user-friendly, and that the procedure is fast as the total time required is <1 h, which includes amplification.FigureResults achieved with multi-analyte NALFIA for E. coli virulence factors. First strip: blank; second to sixth strip: each of the STEC factors; seventh strip: all factorsElectronic supplementary materialThe online version of this article (doi:10.1007/s00216-010-4334-z) contains supplementary material, which is available to authorized users.
The present study demonstrates that carbon nanoparticles (CNPs) can be used as labels in microarrays. CNPs were used in nucleic acid microarray immunoassays (NAMIAs) for the detection of different Shiga toxin-producing Escherichia coli (STEC) virulence factors: four genes specific for STEC (vt1, vt2, eae, and ehxA) and the gene for E. coli 16S (hui). Optimization was performed using a Box-Behnken design, and the limit of detection for each virulence factor was established. Finally, this NAMIA using CNPs was tested with DNA from 48 field strains originating from cattle feces, and its performance was evaluated by comparing results with those achieved by the reference method q-PCR. All factors tested gave sensitivity and specificity values higher than 0.80 and efficiency values higher than 0.92. Kappa coefficients showed an almost perfect agreement (k > 0.8) between NAMIA and the reference method used for vt1, eae, and ehxA, and a perfect agreement (k = 1) for vt2 and hui. The excellent agreement between the developed NAMIA and q-PCR demonstrates that the proposed analytical procedure is indeed fit for purpose, i.e., it is valuable for fast screening of amplified genetic material such as E. coli virulence factors. This also proves the applicability of CNPs in microarrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.