Abstract.Stochastic simulation methods are normally extended as the only available to assess the reliability of the PV system implies the generation, for an extended period of time, of the main state variables of the physical equations describing the energy balance of the system, that is, the energy delivered to the load and the energy stored in the batteries. Most of these methods consider the daily load as a constant over the year and control the variables indicating the reliability associated with the supply of power to the load. Furthermore, these methods rely on previous random models forgenerating solar radiation data and, since the approximations of the simulation methods are asymptotic, when more precise reliability indicators are required, the simulation period needs to be extended. This paper presents a mathematical methodology to address the daily energy balance without resorting to simulation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.