In this paper we study factorization formulae for the Lax matrices of the classical Ruijsenaars-Schneider and Calogero-Moser models. We review the already known results and discuss their possible origins. The first origin comes from the IRF-Vertex relations and the properties of the intertwining matrices. The second origin is based on the Schlesinger transformations generated by modifications of underlying vector bundles. We show that both approaches provide explicit formulae for M -matrices of the integrable systems in terms of the intertwining matrices (and/or modification matrices). In the end we discuss the Calogero-Moser models related to classical root systems. The factorization formulae are proposed for a number of special cases.
We establish a remarkable relationship between the quantum Gaudin models with boundary and the classical many-body integrable systems of Calogero-Moser type associated with the root systems of classical Lie algebras (B, C and D). We show that under identification of spectra of the Gaudin Hamiltonians H G j with particles velocitiesq j of the classical model all integrals of motion of the latter take zero values. This is the generalization of the quantum-classical duality observed earlier for Gaudin models with periodic boundary conditions and Calogero-Moser models associated with the root system of the type A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.