The solar and wind renewable energy sources are gaining popularity to encourage green energy into the power system. The cost of generation of solar and wind energy sources are decreasing and competing with conventional coal-based generation. Therefore, it is very important to integrate these renewable sources into the power system. Integrating Solar and wind energy sources require to solve the uncertainty problem. Both the solar and wind energy generation is uncertain and not controllable. In this paper, sliding window optimal ARIMA forecasting algorithm is proposed to solve the uncertainty associated with solar and wind sources. The proposed forecasting method is used on the data collected from National Renewable Energy Laboratory website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.