We report on the characterization of recently developed submillimetric He gas jets with peak density higher than 10(21) atoms/cm(3) from cylindrical and slightly conical nozzles of throat diameter of less than 400 μm. Helium gas at pressure 300-400 bar has been developed for this purpose to compensate the nozzle throat diameter reduction that affects the output mass flow rate. The fast-switching electro-valve enables to operate the jet safely for multi-stage vacuum pump assembly. Such gaseous thin targets are particularly suitable for laser-plasma interaction studies in the unexplored near-critical regime.
Experimental measurements of proton acceleration with high intensity and high-contrast short laser pulses have been carried out over an order of magnitude range in target thickness and laser pulse duration. The dependence of the maximum proton energy with these parameters is qualitatively supported by two-dimensional particle-in-cell simulations. They evidence that two regimes of proton acceleration can take place, depending on the ratio between the density gradient and the hot electron Debye length at the rear target surface. As this ratio can be affected by the target thickness, a complex interplay between pulse duration and target thickness is observed. Measurements and simulations support unexpected variations in the laser absorption and hot electron temperature with the pulse duration and laser intensity, for which density profile modification at the target front surface is the controlling parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.