This paper describes a novel device to simulate in vivo aroma release from liquids. This artificial throat simulates the act of swallowing followed by exhalation and shows aroma release curves that are similar in shape to in vivo release profiles. Liquids are poured down a tube, and a thin liquid film remains at the inner wall of the tube. Subsequently, aroma compounds release from this film into a stream of air flowing through this tube, which is analyzed by MS-Nose analysis. The effects of air flow rate, contact time with glass surface, presence of saliva, and addition of whey protein, as well as volume, concentration, temperature, and viscosity of the liquid have been studied and compared with aroma release measurements in vivo. A high level of agreement was found. These results confirm the importance of swallowing for aroma release of liquids, as mentioned in the literature, and the usefulness of the new mimicking device.
Spray drying is used for the manufacture of many consumer and industrial products such as instant dairy and food products, laundry detergents, pharmaceuticals, ceramics, and agrochemicals. During spray drying, agglomerates of powder particles are formed which determine the instant properties of the powder. Agglomeration during spray drying is considered to be a difficult process to control. The main cause of this is the complex interaction of the process variables: the atomization process, the mixing of spray and hot air, the drying of suspension droplets and the collision of particles which might lead to coalescence or agglomeration. As a consequence, agglomeration during spray drying is operated by trial-anderror. In an EC-sponsored project, named the EDECAD projects, an industrially validated computer model, using CFD technology, to predict agglomeration processes in spray drying machines is developed. An Euler-Lagrange approach with appropriate elementary models for drying, collision, coalescence and agglomeration of the dispersed phase is used. The main result of the EDECAD project is a so-called ''Design Tool,'' which establishes relations between the configuration of the drying installation (geometry, nozzle selection), process conditions, product composition and final powder properties. The Design Tool is being validated on pilot-plant scale and industrial scale. It will provide an advanced tool for improved design and optimization of spray drying and agglomeration equipment, to improve the quality of products and to increase the productivity of such equipment. This article introduces the background and approach of the project and some preliminary results.
Spray drying is used for the manufacture of many consumer and industrial products such as instant dairy and food products, laundry detergents, pharmaceuticals, ceramics, and agrochemicals. During spray drying, agglomerates of powder particles are formed that determine the instant properties of the powder. Agglomeration during spray drying is considered to be a difficult process to control. The main cause of this is the complex interaction of the process variables: the atomization process, the mixing of spray and hot air, the drying of suspension droplets, and the collision of particles, which might lead to coalescence or agglomeration. As a consequence, agglomeration during spray drying is operated by trial and error. In an EC-sponsored project, named the EDECAD project and coordinated by NIZO food research, an industrially validated computer model, using CFD technology, to predict agglomeration processes in spray drying machines is developed. A Euler-Lagrange approach with appropriate elementary models for drying, collision, coalescence, and agglomeration of the dispersed phase is used. The main result of the EDECAD project is a so-called design tool, which establishes relations between the configuration of the drying installation (geometry, nozzle selection), process conditions, product composition, and final powder properties. The design tool has been validated on pilot plant scale and industrial scale. This article presents the setup and results of dynamic stickiness tests and some CFD simulation and validation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.