Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.
A novel stacking procedure is presented for volume phase holographic gratings (VPHGs) recorded in photopolymer material using Corning Willow Glass as a flexible substrate in order to achieve broader angular and spectral selectivity in a diffractive device with high efficiency for solar and LED applications. For the first time to our knowledge, we have shown a device designed for use with a white LED that has the same input and output angles and high efficiency when illuminated by different wavelengths. In this paper, two VPHGs were designed, experimentally recorded, and tested when illuminated at normal incidence. The experimental approach is based on stacking two individual gratings in which the spatial frequency and slant have been tailored to the target wavelength and using real-time on-Bragg monitoring of the gratings in order to control the recorded refractive index modulation, thereby optimizing each grating efficiency for its design wavelength. Lamination of the two gratings together was enabled by using a flexible glass substrate (Corning Willow Glass). Recording conditions were studied in order to minimize the change in diffraction efficiency and peak diffraction angle during lamination and bleaching. The final fabricated stacked device was illuminated by a white light source, and its output was spectrally analyzed. Compared to a single grating, the stacked device demonstrated a twofold increase in angular and wavelength range. The angular and wavelength selectivity curves are in good agreement with the theoretical prediction for this design. This approach could be used to fabricate stacked lenses for white light LED or solar applications.
A compound holographic optical element to generate achromatic vortices with high efficiency, based on the combination of two volume phase holograms, is designed and constructed. This element is compact and easy to align. It has high damage threshold, so it can be used with ultraintense laser pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.