In this paper, we propose a novel scheme to accelerate integral equation solvers when applied to multiscale problems. These class of problems exhibit multiple length/frequency scales and arise when analyzing scattering/radiation from realistic structures where dense discretization is necessary to accurately capture geometric features. Solutions to the discretized integral equations due to these structures is challenging, due to their high computational cost and ill-conditioning of the resulting matrix system. The focus of this paper is on ameliorating the computational cost. Our approach will rely on exploiting the recently developed accelerated Cartesian expansion (ACE) algorithm to arrive at a method that is stable and efficient at low frequencies. These will then be integrated with the well known fast multipole method, thus forming a scheme that is wideband. Rigorous convergence estimates of this method are derived, and convergence and efficiency of the overall fast method is demonstrated. These are then integrated into an existing integral equation solver, whose efficiency is demonstrated for some practical problems.
Index Terms-Accelerated Cartesian expansion (ACE), Cartesian expansions, fast multipole method (FMM), fast solvers, integral equation (IE), multipole methods, multiscale, scattering, wideband.
a b s t r a c tDiffusion, lossy wave, and Klein-Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green's functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales aswhere N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as OðN s N t log 2 N t Þ. Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.