A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.
Inconel 738LC (IN738LC) is a nickel-based superalloy specially used in the hot section components of turbine engines. One of its main drawbacks relies on the cracking susceptibility when it is manufactured by laser powder bed fusion (LPBF). This paper analyzes the influence of minor alloying element concentration on cracking tendency of IN738LC superalloy manufactured by LPBF. For that objective, samples were manufactured using two powders, which presented different minor alloying elements concentration (Si, Zr and B). It was shown that the samples crack tendency was very different depending on the powder used for their manufacturing. In fact, the measured crack density value was 2.73 mm/mm2 for the samples manufactured with the powder with higher minor alloying elements concentration, while 0.25 mm/mm2 for the others. Additionally, a special emphasis has been put on elemental composition characterization in cracked grain boundaries in order to quantify possible Si or Zr enrichment. It has been also studied the differences of solidification ranges and grain structures between both samples as a consequence of different minor alloying elements concentration in order to analyze their effect on crack susceptibility. In this sense, Scheil-Gulliver simulation results have shown that samples with higher Si and Zr contents presented higher solidification range temperature. This fact, as well as an increase of the presence of high angle grain boundaries (HAGB), leaded to an increment in the crack formation during solidification. Therefore, in this research work, an understanding of the factors affecting crack phenomenon in the LPBF manufactured IN738LC was accomplished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.