Background:Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial.Methods:We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy.Results:CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate.Conclusions:Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer.
Background:Observations that diabetics treated with biguanide drugs have a reduced risk of developing cancer have prompted an enthusiasm for these agents as anti-cancer therapies. We sought to determine the efficacy of the biguanide phenformin in the chemoprophylaxis and in the treatment of oestrogen receptor (ER)-positive MCF7 and receptor triple-negative MDAMB231 xenografts in immunocompromised mice. We also compared the efficacy of phenformin and metformin in the treatment of MDAMB231.Methods:Immunocompromised mice were divided into groups: (1) phenformin administered for 2 weeks prior to cell injection; (2) established tumours treated with phenformin; (3) established tumours treated with metformin (only for MDAMB231 tumours); (4) untreated controls. Post-treatment tumours, liver and spleen were harvested for further analysis.Results:Phenformin significantly inhibited both the development and growth of MCF7 and MDAMB231 tumours, and for MDAMB231 at greater efficacy than metformin without murine toxicity. The number of mitotic figures was significantly fewer in xenografts treated with phenformin compared with controls. Results suggested that the mechanism of action of phenformin in vivo is consistent with AMPK activation.Conclusion:Phenformin has clinical potential as an antineoplastic agent and should be considered for clinical trials both in ER-positive and triple-negative breast cancer.
The product of the Aspergillus nidulans cnxF gene was found by biochemical analysis of cnxF mutants to be involved in the conversion of precursor Z to molybdopterin. Mutants cnxF1242 and cnxF8 accumulate precursor Z, while the level of molybdopterin is undetectable. The DNA sequence of the cnxF gene was determined, and the inferred protein of 560 amino acids was found to contain a central region (residues around 157 to 396) similar in sequence to the prokaryotic proteins MoeB, which is thought to encode molybdopterin synthase sulfurylase, ThiF, required for thiamine biosynthesis, and HesA, involved in heterocyst formation, as well as eukaryotic ubiquitin-activating protein E1. Based on these similarities, a possible mechanism of action is discussed. Sequence comparisons indicate the presence of one and possibly two nucleotide binding motifs, Gly-X-Gly-X-XGly, as well as two metal binding Cys-X-X-Cys motifs in this central region of the CnxF protein. Seven in vivo generated A. nidulans cnxF mutants were found to have amino acid substitutions of conserved residues within this central region of similarity to molybdopterin synthase sulfurylase, indicating that these seven amino acids are essential and that this domain is crucial for function. Of these seven, the cnxF1285 mutation results in the replacement of Gly-178, the last glycine residue of the N-proximal Gly-X-Gly-X-X-Gly motif, indicating that this motif is essential. Mutation of the conserved Arg-208, also probably involved in nucleotide binding, leads to a loss-of-function phenotype in cnxF200. Alteration of Cys-263, the only conserved Cys residue (apart from the metal binding motifs), in cnxF472 suggests this residue as a candidate for thioester formation between molybdopterin synthase and the sulfurylase. Substitution of Gly-160 in two independently isolated mutants, cnxF21 and cnxF24, results in temperature-sensitive phenotypes and indicates that this residue is important in protein conformation. The C-terminal CnxF stretch (residues 397-560) shows substantial sequence conservation to a yeast hypothetical protein, Yhr1, such conservation between species suggesting that this region has function. Not inconsistent with this proposition is the observation that mutant cnxF8 results from loss of the 34 C-terminal residues of CnxF. There is no obvious similarity of the CnxF C-terminal region with other proteins of known function. Two cnxF transcripts are found in low abundance and similar levels were observed in nitrate-or ammonium-grown cells.
Radiotherapy is a key treatment option for breast cancer, yet the molecular responses of normal human breast epithelial cells to ionizing radiation are unclear. A murine subcutaneous xenograft model was developed in which nonneoplastic human breast tissue was maintained with the preservation of normal tissue architecture, allowing us to study for the first time the radiation response of normal human breast tissue in situ. Ionizing radiation induced dose-dependent p53 stabilization and p53 phosphorylation, together with the induction of p21(CDKN1A) and apoptosis of normal breast epithelium. Although p53 was stabilized in both luminal and basal cells, induction of Ser392-phosphorylated p53 and p21 was higher in basal cells and varied along the length of the ductal system. Basal breast epithelial cells expressed DNp63, which was unchanged on irradiation. Although stromal responses themselves were minimal, the response of normal breast epithelium to ionizing radiation differed according to the stromal setting. We also demonstrated a dose-dependent induction of g-H2AX foci in epithelial cells that was similarly dependent on the stromal environment and differed between basal and luminal epithelial cells. The intrinsic differences between human mammary cell types in response to in vivo irradiation are consistent with clinical observation that therapeutic ionizing radiation is associated with the development of basal-type breast carcinomas. Furthermore, there may be clinically important stromal-epithelial interactions that influence DNA damage responses in the normal breast. These findings demonstrate highly complex responses of normal human breast epithelium following ionizing radiation exposure and emphasize the importance of studying whole-tissue effects rather than single-cell systems. Cancer Res; 70(23); 9808-15. Ó2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.