Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density. Subject headingg s: open clusters and associations: individual
Two recent observing campaigns provide us with moderate dispersion spectra of more than 230 cluster and 370 field B stars. Combining them and the spectra of the B stars from our previous investigations (∼430 cluster and ∼100 field B stars) yields a large, homogeneous sample for studying the rotational properties of B stars. We derive the projected rotational velocity V sin i, effective temperature, gravity, mass, and critical rotation speed V crit for each star. We find that the average V sin i is significantly lower among field stars because they are systematically more evolved and spun down than their cluster counterparts. The rotational distribution functions of V eq /V crit for the least evolved B stars show that lower mass B stars are born with a larger proportion of rapid rotators than higher mass B stars. However, the upper limit of V eq /V crit that may separate normal B stars from emission-line Be stars (where rotation promotes mass loss into a circumstellar disk) is smaller among the higher mass B stars. We compare the evolutionary trends of rotation (measured according to the polar gravity of the star) with recent models that treat internal mixing. The spin-down rates observed in the high-mass subset (∼9 M ) agree with predictions, but the rates are larger for the low-mass group (∼3 M ). The faster spin-down in the low-mass B stars matches well with the predictions based on conservation of angular momentum in individual spherical shells. Our results suggest that the fastest rotators (that probably correspond to the emission-line Be stars) are probably formed by evolutionary spin-up (for the more massive stars) and by mass transfer in binaries (for the full range of B star masses).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.