Starting from the fact that the real mechanism in a chemical equation takes places through a certain number of radicals which participate in simultaneous reactions and initiate chain reactions according to a particular pattern, the aim of this study is to determine their number in the first couple of steps of the reaction. Based on this, the numbers of radicals were determined in the general case, in the form of linear difference equations, which, by certain mathematical transformations, were reduced to one equation that satisfies a particular numeric series, entirely defined if its first members are known. The equation obtained was solved by a common method developed in the theory of numeric series, in which its solutions represent the number of radicals in an arbitrary step of the reaction observed, in the analytical form. In the final part of the study, the method was tested and verified using two characteristic examples from general chemistry. The study also gives a suggestion of a more efficient procedure by reducing the difference equation to a lower order
Izvod Kod poluidealnog gasa, koji u tehničkoj praksi ima svoje mesto i značaj, promena entropije ne može se odrediti preko srednjeg specifičnog toplotnog kapaciteta na način kao što se određuje promena unutrašnje energije i entalpije, odnosno razmenjena količina toplote. Uzimajući ovo u obzir, u radu su izvedena dva modela preko kojih je moguće odrediti promenu specifične entropije poluidealnog gasa za proizvoljan temperaturni interval primenom tablične metode, koristeći srednje vrednosti pogodno izabranih funkcija.Ideja je da se integriranje koje se ovde neminovno javlja, zameni srednjim vrednostima prethodnih funkcija.Modeli su izvedeni na bazi funkcionalne zavisnosti stvarnog specifičnog toplotnog kapaciteta od temperature. Takođe, izvršena je analiza usvajanja pogodne početne temperature.Pri ovome korišćena je teorema o srednjoj vrednosti funkcije kao i matematičke osobine određenog integrala. Srednja vrednost razlomljene funkcije određena je direktno preko njene podintegralne funkcije dok je kod logaritamske funkcije izvršena pogodna transformacija primenom diferencijalnog računa. Izvedene relacije, primenom računarskog programa, omogućile su sastavljanje odgovarajućih termodinamičkih tablica preko kojih je moguće odrediti promenu entropije proizvoljne promene stanja na efikasan odnosno racionalan način bez primene integralnog računa, odnosno gotovih obrazaca. Na ovaj način, promena entropije poluidealnog gasa, određena je za proizvoljan temperaturni interval analognom metodom koja se primenjuje i kod određivanja promene unutrašnje energije i entalpije odnosno razmenjene količine toplote, što je bio i cilj rada. Verifikacija predložene metode za obe gore navedene funkcije, izvedena je za nekoliko karakterističnih poluidealnih gasova kod kojih je izraženija nelinearnost funkcije c p (T), za tri usvojena temperaturska intervala, za karakterističnu promenu stanja. Pri ovome izvršeno je poređenje rezultata prema klasičnoj integralnoj i predloženoj metodi preko sastavljenih tablica za razlomljenu funkciju. Prema drugom modelu s obzirom na logaritamsku funkciju izvršeno je poređenje sa prvim modelom pri čemu je dobijena zadovoljavajuća tačnost. Prikazanu metodu, u određenim odnosno posebnim slučajevima, moguće je primeniti i kod određivanja promene entropije realnog gasa. Isto tako, u radu je pokazano da je promenu entropije za posmatrani karakterističan slučaj, moguće predstaviti odnosno grafički odrediti planimetrijskom metodom u dijagramima sa pogodno odabranim koordinatama. Ključne reči: poluidealan gas, promena entropije, srednji i pravi specifični toplotni kapacitet, srednja vrednost funkcije, diferencijalni i integralni račun, tablične vrednosti funkcije, aproksimativne funkcije, grafičke metode.
Starting from the definition of the average specific heat capacity for chosen temperature range, the analytic dependence between the real and the mean specific heat capacities is obtained using differential and integral calculation. The obtained relation in differential form for the defined temperature range allows for the problem to be solved directly, without any special restrictions on its use. Using the obtained relation, a general model in the form of a polynomial of arbitrary degree in the function of temperature was derived, which has more suitable and faster practical application and is more general in character than the existing model. New graphical method for solving the problem is obtained based on differential geometry and using the derived equation. This may also have practical significance since many problems in thermodynamics are solved analytically and graphically. This result was used in order to obtain the amount of specific heat exchanged using an analytical model or a planimetric method. In addition, this graphical solution was used for the construction of the diagram showing the dependence between the specific heat exchanged and temperature. This diagram also gives a simple graphical procedure for the calculation of the real and the average specific heat capacity for arbitrary temperature or temperature interval. The confirmation for all graphic constructions is obtained using the differential properties between thermodynamic units. In order for the graphical solutions presented to be applicable in practice, suitable ratio coefficients have been determined for all cases. Verification of the model presented, as well as the possibilities of its application, were given using several characteristic examples of semi-ideal and real gas. Apart from linear and non-linear functions in the form of polynomials, the exponential function of the dependence between specific heat capacities and temperature was also analysed in this process
Starting from the experimental concentration-time ( cA,t diagram this work gives the construction of the rate of reaction-time (rA,t diagram using the pure graphic method. The diagram was constructed based on the constructed tangents in arbitrary points of the starting diagram by drawing lines parallel to them in the predetermined pole. The evidence of the construction was derived using differential geometry, i.e. the main theorem of differential calculus. Differential properties between the observed values were used in the method. Starting from the analytic relations rA = rA(t) and cA = cA(t), which can be very complex (polynomes of the n-th order), and, eliminating time t in order to give a full description of the process, we obtain the analytical relation rA = rA(cA), which is then graphically represented. Hoewever, this elimination of time can also be done graphically, in a relatively simple way. After that, through the use of the integral calculus, it was shown that concentration increase in a time interval is proportional to the (rA,t) diagram surface area. Using a similar procedure, further in the paper, it was shown that the time increase is proportional to the (1/rA, cA) diagram surface area. In order for the method to be applicable in practice, we have derived relations for appropriate coefficients of proportionality. Verification of the method is illustrated by the two characteristic examples from chemical kinetics at different monotonies of the starting experimental functions
U radu je, na primeru jednog karakterističnog opterećenog zavarenog sklopa, izvršena optimizacije njegovih dimenzija sa aspekta troškova zavarivanja. Pri ovome, u prvoj fazi definisane su promenljive i nepromenljive veličine i postavljen matematički oblik funkcije optimizacije. U sledećoj etapi procedure, definisan je i postavljen sistem najvažnijih funkcija ograničenja koji se pri projektovanju konstrukcije moraju uzeti u obzir i tehnolog i konstruktor. Na taj način, dobijen je matematički model optimizacije posmatranog problema za čije je efikasno rešavanje predložen metod geometrijskog programiranja. U nastavku, polazeći od matematičke osnove, detaljno je razrađen algoritam optimizacije predložene metode pri čemu su postavljene glavne jednačine problema, a koje važe uz određene uslove. Na taj način, optimizacioni ili primarni zadatak sveo se na dualni zadatak preko odgovarajuće funkcije, koji se znatno lakše rešava u odnosu na primarni zadatak optimizacije funkcije cilja. Glavni razlog za ovo je dobijeni sistem linearnih jednačina. Pri ovome iskorištena je korelacija između optimalnog primarnog vektora koji minimizira funkciju cilja i dualnog vektora koji maksimizira dualnu funkciju. Metoda je ilustrovana na jednom računskom praktičnom primeru sa različitim brojem funkcija ograničenja. Pokazano je da se za slučaj manjeg stepena složenosti, do rešenja može doći maksimizacijom odgovarajuće dualne funkcije, primenom matematičke analize odnosno diferencijalnog računa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.