Abstract. The accurate measurement of the magnetic field along the orbits of the four Cluster spacecraft is a primary objective of the mission. The magnetic field is a key constituent of the plasma in and around the magnetosphere, and it plays an active role in all physical processes that define the structure and dynamics of magnetospheric phenomena on all scales. With the four-point measurements on Cluster, it has become possible to study the three-dimensional aspects of space plasma phenomena on scales commeasurable with the size of the spacecraft constellation, and to distinguish temporal and spatial dependences of small-scale processes. We present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight. We also report on the results of the preliminary in-orbit calibration of the magnetometers; these results show that all components of the magnetic field are measured with an accuracy approaching 0.1 nT. Further data analysis is expected to bring an even more accurate determination of the calibration parameters. Several examples of the capabilities of the investigation are presented from the commissioning phase of the mission, and from the different regions visited by the spacecraft to date: the tail current sheet, the dusk side magnetopause and magnetosheath, the bow shock and the cusp. We also describe the data processing flow and the implementation of data distribution to other Cluster investigations and to the scientific community in general.
We have used a unique constellation of Earth‐orbiting spacecraft and ground‐based measurements in order to study a relatively isolated magnetospheric substorm event on August 27, 2001. Global ultraviolet images of the northern auroral region established the substorm expansion phase onset at 0408:19 (±1 min) UT. Concurrent measurements from the GOES‐8, POLAR, LANL, and CLUSTER spacecraft allow us to construct a timeline which is consistent with magnetic reconnection on the closed field lines of the central plasma sheet near XGSM ∼ −18 RE some 7 minutes prior to the near‐earth and auroral region times of substorm expansion phase onset. This suggests that magnetic reconnection (i.e., the substorm neutral line) in this case formed in the mid‐tail region substantially before current disruption, field dipolarization near geostationary orbit, or auroral substorm onsets occurred. Thus, the magnetic reconnection process is interpreted as the causative driver of dissipation in this well‐observed case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.