During cycles of vegetative propagation, sweetpotato accumulates viruses that are thought to contribute to decline in yield and quality of cultivars, but the effects of specific viruses, many of which have been described only recently, are unknown. Field plots planted with graft-inoculated plants of a virus-tested (VT) mericlone of cv. Beauregard were used to assess the effects of three common potyviruses, Sweet potato feathery mottle virus (SPFMV), Sweet potato virus G (SPVG), and Ipomoea vein mosaic virus (IVMV); and a begomovirus, Sweet potato leaf curlvirus (SPLCV), compared with natural inoculum introduced by grafting plants from farmers' stock. Single infections with SPFMV, SPVG, or IVMV did not significantly affect yield, whereas mixed infections with SPFMV + SPVG or SPFMV + SPVG + IVMV resulted in mean yields 14% less than the VT controls. Infection with SPLCV resulted in mean yields 26% less than the VT controls, despite not causing symptoms on the foliage. However, grafting with farmers' plants infected with an unknown mixture of pathogens resulted in mean yields 31 to 44% less than the VT controls. Infection with potyviruses resulted in storage roots with tan periderm and infection with SPLCV induced darker periderm than the rosy VT controls. Infection with the viruses known to occur commonly in the United States did not reproduce the magnitude of yield reduction that has been observed with naturally infected plants.
Previous surveys for viruses in sweetpotatoes (Ipomoea batatas) in Africa did not assay for the presence of begomoviruses such as Sweet potato leaf curl virus (SPLCV), which have been found recently in the Americas and Asia. Symptomatic sweetpotato plants, including some with leaf curling symptoms similar to those observed in SPLCV-infected sweet-potato plants (2), were collected from a germplasm collection plot at Kakamega Research Station in Western Kenya during February 2005. Whiteflies, the vectors for begomoviruses, were observed in the same plots. Ipomoea setosa plants graft-inoculated with scions from the symptomatic sweetpotato developed leaf curl, leaf roll, interveinal chlorosis, and stunting symptoms similar to those caused by infection with SPLCV alone or in combination with Sweet potato feathery mottle virus. Total DNA was isolated from 10 I. setosa plants using the GenElute Plant Genomic DNA Kit (Sigma-Aldrich Inc., St. Louis, MO). Sweetpotato cuttings from 39 clones, selected from the Kenyan germplasm collection for their resistance or susceptibility to sweetpotato virus disease (SPVD), were sent to the Plant Germplasm Quarantine Office of USDA-ARS. The cuttings were planted in a greenhouse. Total DNA was extracted from sweetpotato leaves 1 month later using a cetyltrimethylammoniumbromide (CTAB) extraction method (1). Degenerate primers SPG1/SPG2, developed for PCR detection of begomoviruses (1), amplified a 912-bp DNA fragment from 3 of 10 DNA extracts from I. setosa and 5 of 39 sweetpotato plants held in quarantine. The primers anneal to regions of open reading frame (ORF) AC2 and ORF AC1 that are highly conserved in begomoviruses infecting sweetpotato. SPLCV-specific primers PW285-1/PW285-2 (2) amplified a 512-bp DNA fragment of ORF AC1 from seven samples (two from I. setosa and five from I. batatas). Amplicons from three independent PCR assays of two samples and single PCR assays of four additional samples were cloned into the pGEM-T Easy vector. Clone inserts were sequenced, and compared with sequences deposited in GenBank using the basic local alignment search tool (BLAST). Sequences were closely related to SPLCV (GenBank Accession No. AF104036) with nucleotide sequence identities varying from 93% (GenBank Accession No. DQ361004) to 97% (GenBank Accession No. DQ361005). The presence of the virus poses a challenge to the dissemination of planting materials in the region because begomovirus-infected plants often do not show symptoms. To our knowledge, this is the first report of a begomovirus infecting sweetpotato in Kenya or the East African Region. References: (1) R. Li et al. Plant Dis. 88:1347, 2004. (2) P. Lotrakul et al. Plant Dis. 82:1253, 1998.
Thirty-five isolates of Fusarium oxysporum obtained from diseased sweetpotato or tobacco were compared for pathogenicity on two cultivars each of sweetpotato and tobacco, by random amplified polymorphic DNA (RAPD) profiles, and by vegetative compatibility group (VCG) analysis. Analysis of RAPD profiles revealed five clusters of isolates that corresponded to patterns of pathogenicity. One cluster of isolates, designated as F. oxysporum f. sp. nicotianae, induced severe wilting on both tobacco cultivars but varied from weakly to highly aggressive on the sweetpotato cultivars. Four of the 16 isolates from this group were originally isolated from sweetpotato, and 1 isolate caused severe disease on both crops. Three clusters included isolates from sweetpotato that were virulent on Porto Rico, caused little or no disease on Beauregard and burley tobacco (cv. Kentucky 5), and did not cause wilt on flue-cured tobacco (cv. Gold Dollar). These isolates were designated as race 0 of F. oxysporum f. sp. batatas. Isolates obtained from sweetpotato from California clustered separately from other sweetpotato isolates and the tobacco isolates. They differed from other sweetpotato isolates in being virulent on Beauregard and are proposed as a new race 1 of F. oxysporum f. sp. batatas. VCG analysis was of limited value with the isolates in this study because many isolates were self-incompatible. In each case, all members of a VCG fell within the same cluster defined by RAPDs. This study demonstrated that F. oxysporum from at least three genetically distinct lineages can cause Fusarium wilt on sweetpotato, and that the host ranges of F. oxysporum f. sp. batatas and F. oxysporum f. sp. nicotianae overlap and include plants from two different families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.