An electromyography (EMG) is an analytical tool used to record muscles' electrical activity, which produces an electrical signal proportional to the level of muscle activity. EMG signal plays a vital role in bio-mechatronic engineering for designing intelligent prostheses and other rehabilitation devices. Analysis of EMG signals with powerful and advanced methodologies is an essential requirement in EMG signal processing, as the EMG signal is a complex nonlinear, non-stationary signal in nature. It is required to use advanced signal processing techniques rather than conventional methods to exact EMG signals' features. Fourier transforms (FT) are not the most appropriate tool for analyzing non-stationary signals such as EMG. In this work, we have developed a system that can be useful for disabled persons to get a regular lifestyle using a functioning part of the body. Here, we studied the electrocution gram behavior of human body parts to feature extraction and trained the neural network to simulate the movements of mechanical actuators such as robotic arms. The wavelet transformation has been used to get high-quality feature extraction from electro cardio grapy and develops proper faltering methods for cardio systems' electrical signals. Finally, an artificial neural network (ANN) is used to classify the EMG signals through exacted features. Classification results are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.