Mice of the DBA/2J strain spontaneously develop complex ocular abnormalities, including glaucomatous loss of retinal ganglion cells (RGC). In the present study ultrastructural features of retinal neurodegeneration in DBA/2J mice of different age (3, 6, 8 and 11 months) are described. By 3 months, RGC apoptosis characterized by electron-dense karioplasm and cytoplasm of ganglion cells was observed. The occurrence of apoptotic ganglion cells peaked at the age of 6 months. Past this age, necrosis characterized by swelling and electron-rare cytoplasm appeared to be the prevailing form of cell death. Müller glia activation increased with age, but there were no signs of leukocyte infiltration. At 8 and 11 months, signs of neoangiogenesis were found both at the ultrastructural level and in clinical examinations. In these older animals myelin-like bodies, most probably representing the intracellular aggregates of phospholipids in irreversibly injured cells, were also seen. Photoreceptor cells were not affected at any age. Our observations suggest that retinal degeneration in the DBA/2J mice does not involve recruitment of blood-borne inflammatory/phagocytosing cells, and that apoptosis is gradually replaced by necrosis as the predominant pathway of RGC death. Retinal degeneration in 3- to 11-month-old DBA/2J mice partially resembles human pigment dispersion syndrome and pigmentary glaucoma with characteristic anterior segment changes and elevation of intraocular pressure. However, neovasculogenesis and myelin-like bodies are observed during aging. Therefore, the DBA/2J model requires judicious interpretation as a glaucoma model.
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.