SALL4, a zinc-finger transcriptional factor for embryonic stem cell self-renewal and pluripotency, has been suggested to be involved in tumorigenesis. The role of SALL4 in human gastric cancer, however, remains largely unknown. In this study, we demonstrated that SALL4 was aberrantly expressed at both mRNA and protein levels in human gastric cancer tissues, and SALL4 level was highly correlated with lymph node metastasis. Enforced expression of SALL4 enhanced the proliferation and migration of human gastric cancer cells, whereas knockdown of SALL4 by siRNA led to the opposite effects. In addition, SALL4 overexpression promoted the growth and metastasis of gastric xenograft tumor in vivo. SALL4 overexpression induced epithelial-mesenchymal transition (EMT) in gastric cancer cells, with increased expression of Twist1, N-cadherin and decreased expression of E-cadherin. Moreover, SALL4 promoted the acquirement of stemness in gastric cancer cells through the induction of Bmi-1 and Lin28B. Taken together, our findings indicate that SALL4 has oncogenic roles in gastric cancer through the modulation of EMT and cell stemness, suggesting SALL4 as a novel target for human gastric cancer diagnosis and therapy.
Emerging evidence indicate that mesenchymal stem cells (MSCs) affect tumor progression by reshaping the tumor microenvironment. Neutrophils are essential component of the tumor microenvironment and are critically involved in cancer progression. Whether the phenotype and function of neutrophils is influenced by MSCs is not well understood. Herein, we investigated the interaction between neutrophils and gastric cancer-derived MSCs (GC-MSCs) and explored the biological role of this interaction. We found that GC-MSCs induced the chemotaxis of neutrophils and protected them from spontaneous apoptosis. Neutrophils were activated by the conditioned medium from GC-MSCs with increased expression of IL-8, TNFα, CCL2, and oncostatin M (OSM). GC-MSCs-primed neutrophils augmented the migration of gastric cancer cells in a cell contact-dependent manner but had minimal effect on gastric cancer cell proliferation. In addition, GC-MSCs-primed neutrophils prompted endothelial cells to form tube-like structure in vitro. We demonstrated that GC-MSCs stimulated the activation of STAT3 and ERK1/2 pathways in neutrophils, which was essential for the functions of activated neutrophils. We further revealed that GC-MSCs-derived IL-6 was responsible for the protection and activation of neutrophils. In turn, GC-MSCs-primed neutrophils induced the differentiation of normal MSCs into cancer-associated fibroblasts (CAFs). Collectively, our results suggest that GC-MSCs regulate the chemotaxis, survival, activation, and function of neutrophils in gastric cancer via an IL-6–STAT3–ERK1/2 signaling cascade. The reciprocal interaction between GC-MSCs and neutrophils presents a novel mechanism for the role of MSCs in remodeling cancer niche and provides a potential target for gastric cancer therapy.
Fe doped TiO 2 ceramic films were fabricated on carbon steel by plasma electrolytic oxidation. The microstructure of the film was characterised, and the photocatalytic activities of the films were evaluated. The results showed that the phases of the films were anatase TiO 2 and Al 2 TiO 5 . The film surface was rough and porous. With increasing the treatment time, the pores on film surfaces gradually became deep and large, which made the film surfaces rougher. Fe-TiO 2 films showed red shift in photoresponse towards the visible region. The photocatalytic activities of the films were evaluated by photocatalytic oxidation of Rhodamine B aqueous under visible light irradiation. The results revealed that the film showed visible light photocatalytic activity. With increasing treatment time, the degradation rate of rhodamine B gradually increased and the highest degradation rate was ,80% in visible light irradiation for 6 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.