We present the measurement of a new set of jet shape observables for trackbased jets in central Pb-Pb collisions at √ s NN = 2.76 TeV. The set of jet shapes includes the first radial moment or angularity, g; the momentum dispersion, p T D; and the difference between the leading and sub-leading constituent track transverse momentum, LeSub. These observables provide complementary information on the jet fragmentation and can constrain different aspects of the theoretical description of jet-medium interactions. The jet shapes were measured for a small resolution parameter R = 0.2 and were fully corrected to particle level. The observed jet shape modifications indicate that in-medium fragmentation is harder and more collimated than vacuum fragmentation as obtained by PYTHIA calculations, which were validated with the measurements of the jet shapes in proton-proton collisions at √ s = 7 TeV. The comparison of the measured distributions to templates for quark and gluon-initiated jets indicates that in-medium fragmentation resembles that of quark jets in vacuum. We further argue that the observed modifications are not consistent with a totally coherent energy loss picture where the jet loses energy as a single colour charge, suggesting that the medium resolves the jet structure at the angular scales probed by our measurements (R = 0.2). Furthermore, we observe that small-R jets can help to isolate purely energy loss effects from other effects that contribute to the modifications of the jet shower in medium such as the correlated background or medium response.
In this paper, we demonstrate a novel thermal reflow method with an additional near ultraviolet (UV) flood exposure and upside-down reflow configuration for the fabrication of microlenses with an ultrahigh focal number. By using this method, microlenses with a focal number (F # ) as high as 9.7 have been successfully obtained, which is about four fold higher than that can be fabricated with a conventional reflow method.The final profile of the microlenses can be flexibly and accurately tuned by controlling the flood exposure dosage and adopting the appropriate reflow configuration, which enables fabrication not only of spherical microlenses but also of more complex aspheric lenses. The fabricated microlens is characterized by measuring the point spread function (PSF) and the measurement result indicates that the diffraction limited optical performance of the microlens can be achieved. The method developed in this work can be used for the mass and cost-effective fabrication of high performance microlenses with ultrahigh focal numbers, which can find applications such as in accurate optical testing, integration imaging, and laser beam collimating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.