Cross-correlations between stimuli delivered to peripheral nerves and the discharges of single, voluntarily activated, motor units can provide information about facilitatory and inhibitory projections to single spinal motoneurons in man. The projection frequency, under the given circumstances, of a facilitatory or inhibitory pathway can be obtained from the proportion of the sampled motor units of a given muscle showing the facilitatory or inhibitory effect. Deductions about the shape and relative amplitude of the underlying post-synaptic potentials can be made from the profile of the changes in firing probability. This technique has been used to explore the projections of low threshold muscle afferents to motoneurons of various leg muscles in man. Homonymous facilitation was demonstrated to all the sampled motor units of soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA) and vastus medialis (VM) and is presumed to represent the effects of the composite muscle spindle group Ia EPSP. Heteronymous facilitation was demonstrated between certain synergists. The projection frequency was less and the magnitude of the change in firing probability was smaller than for homonymous facilitation. SOL motoneurons, however, were not facilitated from low threshold afferents in the medial gastrocnemius nerve. Reciprocal inhibition was demonstrated between certain antagonists. The majority of the sampled motor units of SOL, however, were facilitated from low threshold afferents in the common peroneal nerve. The threshold for this facilitation was higher than for the homonymous facilitation elicited from this nerve and thus a different class of afferents and/or intercalated interneurons may be involved. There are projections across the knee joint in man. Motor units in vastus medialis (VM) were facilitated from low threshold afferents in the common peroneal nerve. It is likely that these reflex connections, which differ from those in other species, reflect the functional relationships between various lower limb muscles in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.