Chronic cerebral hypoperfusion (CCH) is a major factor contributing to neurological disorders and cognitive decline. Autophagy activation is believed to provide both beneficial and detrimental roles during hypoxic/ischemic cellular injury. Although arginine vasopressin (AVP) has been strongly involved in many behaviors, especially in learning and memory, the effects of AVP on CCH and their molecular mechanisms remain unclear. Here, to investigate whether there was neuroprotective effects of AVP on CCH through V1a receptor (an AVP receptor) signaling, permanent bilateral carotid arteries occlusion (two vessel occlusion, 2VO) was used to establish a rat model of CCH, and hypertonic saline (5.3%) was injected intraperitoneally to induce the secretion of AVP. Results showed that hypertonic saline effectively alleviated spatial learning and memory deficit, enhanced synaptic plasticity of CA3-CA1 hippocampal synapses, upregulated N-methyl-d-aspartate receptor subunit 2B (NR2B) and postsynaptic density protein 95 (PSD-95) surface expressions, reduced oxidative stress and increased Nissl bodies in 2VO model rats. These phenomena were significantly decreased by V1a receptor antagonist SR49059. Interestingly, hypertonic saline also upregulated autophagy in the hippocampus of 2VO rats partly through V1a receptor. These findings imply that AVP has a beneficial role for the treatment of cognitive impairments partly through V1a receptor signaling in CCH, which is possibly related to improving synaptic plasticity by promoting NR2B and PSD-95 externalization and by enhancing autophagy.
Our novel classification system can be used to select the optimal surgical approach and method for patients with renal cell carcinoma and venous thrombus. Its use is associated with prolonged survival and relatively few complications. Metastasis is an independent risk factor of overall survival.
The effects of different laser pulse widths on laser-induced ionization imaging of microstructures embedded in transparent materials are investigated. It is shown that a femtosecond laser-induced ionization probe can detect the variation of elemental composition of the sample materials with a higher contrast ratio, whereas the ionization probe generated by picosecond laser pulses is more sensitive to the structural change inside optical materials, which can be well explained by the different roles of multiphoton ionization and avalanche ionization involved in material breakdown. These results also suggest that an optimum diagnosis could be obtained if well-selected laser parameters are employed in ultrafast laser ionization imaging.
Mitochondrial respiratory complex II utilizes succinate, key substrate of the Krebs cycle, for oxidative phosphorylation, which is essential for glucose metabolism. Mutations of complex II cause cancers and mitochondrial diseases, raising a critical question of the (patho-)physiological functions. To address the fundamental role of complex II in systemic energy metabolism, we specifically knockout SDHB in mice liver, a key complex II subunit that tethers the catalytic SDHA subunit and transfers the electrons to ubiquinone, and found that SHDB deficiency abolishes the assembly of complex II without affecting other respiration complexes while largely retaining SDHA stability. SHDB ablation reprograms energy metabolism and hyperactivates the glycolysis, Krebs cycle and β-oxidation pathways, leading to catastrophic energy deficit and early death. Strikingly, sucrose supplementation or high fat diet resumes both glucose and lipid metabolism and prevent early death. Also, SDHB deficient mice are completely resistant to high fat diet induced obesity. Our findings reveal that the unanticipated role of complex II orchestrating both lipid and glucose metabolisms, and suggest that SDHB is an ideal therapeutic target for combating obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.