Context. The rotation curve, the total mass and the gravitational potential of the Galaxy are sensitive measurements of the dark matter halo profile. Aims. Cuspy and cored DM halo profiles are analysed with respect to recent astronomical constraints in order to constrain the shape of the Galactic DM halo and the local DM density. Methods. All Galactic density components (luminous matter and DM) are parametrized. Then the total density distribution is constrained by astronomical observations: 1) the total mass of the Galaxy, 2) the total matter density at the position of the Sun, 3) the surface density of the visible matter, 4) the surface density of the total matter in the vicinity of the Sun, 5) the rotation speed of the Sun and 6) the shape of the velocity distribution within and above the Galactic disc. The mass model of the Galaxy is mainly constrained by the local matter density (Oort limit), the rotation speed of the Sun and the total mass of the Galaxy from tracer stars in the halo. Results. We showed from a statistical χ 2 fit to all data that the local DM density is strongly positively (negatively) correlated with the scale length of the DM halo (baryonic disc). Since these scale lengths are poorly constrained the local DM density can vary from 0.2 to 0.4 GeV cm −3 (0.005−0.01 M pc −3 ) for a spherical DM halo profile and allowing total Galaxy masses up to 2× 10 12 M . For oblate DM haloes and dark matter discs, as predicted in recent N-body simulations, the local DM density can be increased significantly.
This paper reports on the development of a technology involving 100 Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed nextgeneration bolometric experiment to search for neutrinoless double-beta decay. Large mass (∼ 1 kg), high optical quality, radiopure 100 Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the doublebeta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8σ . Less than 10 µBq/kg activity of 232 Th ( 228 Th) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg×d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1/2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo.
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay (0νβ β ) of 100 Mo. In this article, we detail the CUPID-Mo detector concept, assema e-mail: andrea.giuliani@csnsm.in2p3.fr bly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of 100 Mo-enriched 0.2 kg Li 2 MoO 4 crystals. The
Electron-beam-induced deposition of materials has been known for almost 40 years from contamination writing. It has developed into “additive lithography” with nanometer resolution employed in scanning electron microscopes, in dedicated lithography systems, in reducing image projection systems, and in scanning tunneling microscopes. The technique allows deposition of nanometer- to micrometer-size structures with nanometer precision in three dimensions without supplementary process steps such as lift-off or etching procedures. Depending on the deposition conditions, novel compound materials are created from organometallic precursors which form resistors with a resistivity ranging from 103 Ω· cm to 2×10-3 Ω· cm and sustain current densities higher than 5×105 A/cm2 without damage. High-resolution transmission electron microscope analysis of the deposits reveals a new class of nanocrystalline compound materials. Crystals of metals or metalcarbides and oxides are immersed in a matrix of carbonaceous material. The deposition process is compatible with conventional VLSI technology. Tips for atomic force and scanning tunneling microscopy can be produced with radii of curvature as small as 5 nm. Field electron emission is obtained from deposited tips starting at an extraction voltage of 8 V and yielding 180 µ A of current at 20 V. Three-dimensional conducting structures can be produced as sensors.
We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear recoils using data collected in 2009 − 2010 by EDELWEISS from four germanium detectors equipped with thermal sensors and an electrode design (ID) which allows to efficiently reject several sources of background. The data indicate no evidence for an exponential distribution of low-energy nuclear recoils that could be attributed to WIMP elastic scattering after an exposure of 113 kg·d. For WIMPs of mass 10 GeV, the observation of one event in the WIMP search region results in a 90% CL limit of 1.0 × 10 −5 pb on the spin-independent WIMP-nucleon scattering cross-section, which constrains the parameter space associated with the findings reported by the CoGeNT, DAMA and CRESST experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.