Toward gene therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections in AIDS, Moloney murine leukemia virus-derived retroviral vectors were engineered to allow constitutive and tatinducible expression of an HIV-1 5' leader sequence-specific ribozyme (Rzl). These vectors were used to infect the human CD4+ lymphocyte-derived MT4 cell line. The stable MT4 transformants expressing an HIV-1 RNAspecific ribozyme, under the control of the herpes simplex virus thymidine kinase (tk) promoter, were found to be somewhat resistant to HIV-1 infection as virus production was delayed. In cells allowing ribozyme expression under control of the simian virus 40 or cytomegalovirus promoter, the rate of HIV-1 multiplication was slightly decreased, and virus production was delayed by about 14 days. The highest level of resistance to HIV-1 infection was observed in MT4 cells transformed with a vector containing a fusion tk-TAR (trans activation-responsive) promoter to allow ribozyme expression in a constitutive and tat-inducible manner; no HIV-1 production was observed 22 days after infection of these cells. These results indicate that retroviral vectors expressing HIV-1 RNA-specific ribozymes can be used to confer resistance to HIV-1 infection.
Hammerhead ribozymes are potentially important tools for suppressing intracellular expression of unwanted RNAs. However, the reports that exist on their activity against different targets have described mixed success. As an initial step towards developing a rapid and effective system for in vivo testing of ribozymes, two human immunodeficiency virus type-1 (HIV-1) polymerase (Pol) mRNA-specific ribozymes, RzPro directed against the protease (Pro) coding region and RzRT directed against the reverse transcriptase (RT) coding region, were designed and tested in Escherichia coli. Both ribozymes displayed similar efficiencies in cleaving their target RNAs in vitro. RNA polymerase chain reaction was adapted to demonstrate the in vivo cleavage of RzPro and RzRT target sites. The resultant drop in HIV-1 RT activity was measured as well. The degree of suppression of RT activity was more apparent in vivo in cells expressing RzRT. The RT activity in cells expressing RzRT was shown to decrease by up to 96%. This system will be useful for rapid screening of (i) other ribozyme target sites within the Pol mRNA so that multitargeted ribozymes could be designed for use in anti-HIV-1 gene therapy, (ii) ribozymes with improved stability and catalytic activity, and (iii) cofactors, if any that could enhance ribozyme activity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.