In Dortmund, planar silicon pixel sensors were designed with modified n+-implantations and produced in n+-in-n sensor technology. Baseline for these new designs was the layout of the IBL planar silicon pixel sensor with a 250 μm × 50 μm pitch. The different implantation shapes are intended to cause electrical field strength maxima to increase charge collection after irradiation and thus increase particle detection efficiency. To test and compare the different pixel designs, the modified pixel designs and the standard IBL design are placed on one sensor which can be read out by a FE-I4. After irradiation with protons and neutrons respectively the performance of several sensors is tested in laboratory and test beam measurements. The presented laboratory results verify that all sensors are fully functional after irradiation. The the test beam measurements show different results for sensors irradiated to the same fluence with neutrons in Sandia compared to sensors irradiated with neutrons in Ljubljana or with protons at CERN PS.
In order to meet the requirements of the High Luminosity LHC (HL-LHC), it will be necessary to replace the current tracker of the ATLAS experiment. Therefore, a new all-silicon tracking detector is being developed, the so-called Inner Tracker (ITk). The use of quad chip modules is intended in its pixel region. These modules consist of a silicon sensor that forms a unit along with four read-out chips.The current ATLAS pixel detector consists of planar n-in-n silicon pixel sensors. Similar sensors and four FE-I4 read-out chips were assembled to first prototypes of planar n-in-n quad modules. The main focus of the investigation of these modules was the region between the read-out chips, especially the central area between all four read-out chips. There are special pixel cells placed on the sensor which cover the gap between the read-out chips.This contribution focuses on the characterization of a non-irradiated device, including important sensor characteristics, charge collection determined with radioactive sources as well as hit efficiency measurements, performed in the laboratory and at testbeams. In addition, first laboratory results of an irradiated device are presented.
The innermost part of the tracking detector of the ATLAS experiment consists mainly of planar n + -in-n silicon pixel sensors. During the phase-0 upgrade, the Insertable B-Layer (IBL) was installed closest to the beam pipe. Its pixels are arranged with a pitch of 250 µm × 50 µm with a rectangular shaped n + implantation. Based on this design modified pixel designs have been developed in Dortmund.Six of these new pixel designs are arranged in structures of ten columns and were placed beside structures with the standard design on one sensor. Because of a special guard ring design, each structure can be powered and investigated separately. Several of these sensors were bump bonded to FE-I4 read-out chips. One of these modules was irradiated with reactor neutrons up to a fluence of 5 × 10 15 n eq cm −2 .This contribution presents important sensor characteristics, charge collection determined with radioactive sources and hit efficiency measurements, performed in laboratory and test beam, of this irradiated device. It is shown that the new modified designs perform similar or better than the IBL standard design in terms of charge collection and tracking efficiency, at the cost of a slightly increased leakage current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.