In this work, we report on the thermal oxidation of AlInN/AlN/GaN heterostructures. A “nearly native” Al2O3 oxide was formed during this oxidation procedure, which can be used as a gate oxide and thus enables the fabrication of metal insulator semiconductor hetero field effect transistors. A constant barrier height of ΦB ≈ 2.34 eV was obtained for all oxidized samples, independent of the oxidation time and temperature, indicating a stable AlInN-oxide interface. The interface state density was approximated to be as low as Nint = 2.5 × 1012 cm-2. Oxide thicknesses were estimated to be in the range of 0.6 nm and 3.2 nm, resulting in a suppression of reverse leakage currents oflarge area metal insulator semiconductor diodes by up to three orders of magnitude. Two-dimensional electron gas density and, in particular, carrier mobility are strongly affected by the thermal oxidation in the O2 atmosphere. A narrow processing window for successful thermal oxidation was identified, covering temperatures between 700 °C and 800 °C and durations of few minutes. The resulting oxide thickness scales well with the square root of oxidation time, indicating diffusion of oxygen atoms into the barrier.
Recently, organometal halide perovskite solar cells have passed the threshold of 20 % power conversion efficiency (PCE). While such PCE values of perovskite solar cells are already competitive to those of other photovoltaic technologies, processing of large-area devices is still a challenge. Most of the devices reported in literature are prepared by small-scale solution-based processing techniques (e.g. spin-coating). Perovskite solar cells processed by vacuum thermal evaporation (VTE), which show uniform layers and achieve higher PCE and better reproducibility, have also been presented. Regarding the co-evaporation of the perovskite constituents, this technology suffers from large differences in the thermodynamic characteristics of the two species. While the organic components evaporate instantaneously at room temperature at pressures in the range of 10−6 hPa, significantly higher temperatures are needed for reasonable deposition rates of the metal halide compound. In addition, hybrid vapor phase deposition techniques have been developed employing a carrier gas to deposit the organic compound on the previously solution-processed metal halide compound. Generally, vapor phase processes have proven to be a desirable choice for industrial large-area production. In this work, we present a setup for the direct chemical vapor phase deposition (CVD) of methylammonium lead iodide (MAPbI3) employing nitrogen as carrier gas. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements are carried out to investigate the crystal quality and structural properties of the resulting perovskite. By optimizing the deposition parameters, we have produced perovskite films with a deposition rate of 30 nm/h which are comparable to those fabricated by solution processing. Furthermore, the developed CVD process can be easily scaled up to higher deposition rates and larger substrates sizes, thus rendering this technique a promising candidate for manufacturing large-area devices. Moreover, CVD of perovskite solar cells can overcome most of the limitations of liquid processing, e.g. the need for appropriate and orthogonal solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.