The in vitro testing of artificial heart valves is often performed with simple fluids like glycerol solutions. Blood, however, is a non-Newtonian fluid with a complex viscoelastic behavior, and different flow fields in comparable geometries may result. Therefore, we used different polymer solutions (Polyacrylamid, Xanthan gum) with blood-like rheological properties as well as various Newtonian fluids (water, glycerol solutions) in our heart valve test device. Hydrodynamic parameters of Björk-Shiley heart valves with a tissue annulus diameter (TAD) of 21-29 mm were investigated under aortic flow conditions. Major results can be summarized as follows. The mean systolic pressure differences depend on the model fluids tested. Closing time and closing volume are not influenced by the rheological behavior of fluids. These parameters depend on TAD and the pressure differences across the valve. In contrast, rheological behavior has a pronounced influence upon leakage flow and leakage volume, respectively. Results show furthermore that the apparent viscosity data as a function of shear rate are not sufficient to characterize the rheological fluid behavior relevant to hydrodynamic parameters of the heart valves investigated. Therefore, similarity in the yield curves of non-Newtonian test fluids mimicing blood is only a pre-requisite for a suitable test fluid. More information about the viscous and elastic component of the fluid viscosity is required, especially in geometries where a complex flow field exists as in the case of leakage flow.
While constructed pericardial valves demonstrate sufficient hemodynamic performance especially in the higher CO range porcine cusp valves exhibited minor resistance in the lower CO range. Patients who exercise regularly may therefore profit from a pericardial valve while patients with a small body surface area and little exercise who therefore remain in the lower CO range may be adequately treated with a porcine cusp valve.
While valves with constructed pericardium showed lower mean transvalvular gradients, particularly in the smaller sizes, this valve type exhibited alterations of movement performance in contrast to porcine valves. It can be speculated that constant power transfer to the valve's structures may result in an earlier degeneration because of the impact of the increased load and stress on the suspension apparatus of the constructed pericardial leaflets.
Hemolytic and subhemolytic blood damage by mechanical heart valve prostheses have been observed in both clinical and in vitro investigations. A direct comparison between these studies is not possible. Nevertheless the transfer of some in vitro results to the behaviour of the valve in situ may be performed considering the similarity principle. This requires the use of dimensionless similarity numbers such as the plasma's hemoglobin concentration (PHb) or others, instead of dimensioned parameters. To evaluate the in vitro hemolysis of valve prosthesis a test chamber filled with human banked blood was used. An artificial ventricle ensuring an oscillatory flow through the valve was also used. The rise of PHb was evaluated in terms of a similarity number, called the lysis number. This number describes the probability of destroying a single red blood cell participating once in the hemolytic process under consideration. The lysis number, a Björk-Shiley valve (TAD 29), was found to be in the order of 2 x 10(-4). From this, the survival time of erythrocytes in patients with an artificial heart valve was estimated. It was found to be in the order of 20 d of T50 Cr in agreement with clinical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.