The authors discuss currently conducted research aimed at improving the planning and performance of search and rescue (SAR) operations at sea. The focus is on the selection of surface units in areas of high traffic density. A large number of ships in the area of distress can make the process of selection of best suited vessels longer. An analysis of features which may render a vessel unsuitable for the job, depending on the area and type of operation, has been conducted. Criteria of assessment and selection of ships have been described, preceded by an expert analysis. The selection process has been made using Multi-Criteria Decision Analysis (MCDA). The authors propose to apply officially available data from the Automatic Identification System (AIS)—a sensor for the ECDIS and other electronic chart systems—in the analysis of the availability of ships. Algorithms filtering available units have been built and applied in a simulation, using real AIS data, of one of the most common types of SAR operations. The method is proposed as an enhancement of decision support systems in maritime rescue services.
One of the ways to prevent accidents at sea is to detect risks caused by humans and to counteract them. These tasks can be executed through an analysis of ship maneuvers and the identification of behavior considered to be potentially dangerous, e.g., based on data obtained online from the automatic identification system (AIS). As a result, additional measures or actions can be taken, e.g., passing at a distance greater than previously planned. The detection of risks at sea requires a prior definition of behavior patterns and the criteria assigned to them. Each pattern represents a specific navigator’s safety profile. The criteria assigned to each pattern for the identification of the navigator’s safety profile were determined from previously recorded AIS data. Due to a large amount of data and their complex relationships, these authors have proposed to use data mining tools. This work continues previous research on this subject. The conducted analysis covered data recorded in simulation tests done by navigators. Typical ship encounter situations were included. Based on additional simulation data, the patterns of behavior were verified for the determination of a navigator’s safety profile. An example of using the presented method is given.
Ship domain is one of navigational safety assessment criteria. Its shape and size depend on many factors, including visibility. This article examines the influence of visibility on the shape and dimensions of ship domain in restricted waters. The research was conducted using a simulator of the ECDIS system with the participation of experts’ navigators. The domains of ships in good and restricted visibility have been compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.