The experimental imaging of electronic orbitals has allowed one to gain a fascinating picture of quantum effects. We here show that the energetically high-lying orbitals that are accessible to experimental visualization in general differ, depending on which approach is used to calculate the orbitals. Therefore, orbital imaging faces the fundamental question of which orbitals are the ones that are visualized. Combining angular-resolved photoemission experiments with first-principles calculations, we show that the orbitals from self-interaction-free Kohn-Sham density functional theory are the ones best suited for the orbital-based interpretation of photoemission.
Charge carrier mobilities in molecular condensates are usually small, as the coherent transport, which is highly effective in conventional semiconductors, is impeded by disorder and the small intermolecular coupling. A significant band dispersion can usually only be observed in exceptional cases such as for p-stacking of aromatic molecules in organic single crystals. Here based on angular resolved photoemission, we demonstrate on the example of planar p-conjugated molecules that the hybridization with a metal substrate can substantially increase the delocalization of the molecular states in selective directions along the surface. Supported by ab initio calculations we show how this mechanism couples the individual molecules within the organic layer resulting in an enhancement of the in-plane charge carrier mobility.
The properties of molecular films are determined by the geometric structure of the first layers near the interface. These are in contact with the substrate and feel the effect of the interfacial bonding, which particularly, for metal substrates, can be substantial. For the model system 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(110), the geometric structure of the first monolayer can be modified by preparation parameters. This leads to significant differences in the electronic structure of the first layer. Here, we show that, by combining angle-resolved photoelectron spectroscopy with low-energy electron diffraction, we cannot only determine the electronic structure of the interfacial layer and the unit cell of the adsorbate superstructure, but also the arrangement of the molecules in the unit cell. Moreover, in bilayer films, we can distinguish the first from the second layer and, thus, study the formation of the second layer and its influence on the buried interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.