The specificity of lead(II)-induced hydrolysis of yeast tRNA(Phe) was studied as a function of concentration of Pb2+ ions. The major cut was localized in the D-loop and minor cleavages were detected in the anticodon and T-loops at high metal ion concentration. The effects of pH, temperature, and urea were also analyzed, revealing a basically unchanged specificity of hydrolysis. In the isolated 5'-half-molecule of yeast tRNAPhe not cut was found in the D-loop, indicating its stringent dependence on T-D-loop interaction. Comparison of hydrolysis patterns and efficiencies observed in yeast tRNA(Phe) with those found in other tRNAs suggests that the presence of a U59-C60 sequence in the T-loop is responsible for the highly efficient and specific hydrolysis in the spatially close region of the D-loop. The efficiencies of D-loop cleavage in intact yeast tRNA(Phe) and in tRNA(Phe) deprived of the Y base next to the anticodon were also compared at various Pb2+ ion concentrations. Kinetics of the D-loop hydrolysis analyzed at 0, 25, and 37 degrees C showed a 6 times higher susceptibility of tRNA(Phe) minus Y base (tRNA(Phe)-Y) to lead(II)-induced hydrolysis than in tRNA(Phe). The observed effect is discussed in terms of a long-distance conformational transition in the region of the interacting D- and T-loops triggered by the Y-base excision.
The present work shows that lead(II) can be used as a convenient structure probe to map the conformation of large RNA's and to follow discrete conformational changes at different functional states. We have investigated the conformation of the 3' domain of the E. coli 16S rRNA (nucleotides 1295-1542) in its naked form, in the 30S subunit and in the 70S ribosome. Our study clearly shows a preferential affinity of Pb(II) for interhelical and loop regions and suggests a high sensitivity for dynamic and flexible regions. Within 30S subunits, some cleavages are strongly decreased as the result of protein-induced protection, while others are enhanced suggesting local conformational adjustments. These rearrangements occur at functionally strategic regions of the RNA centered around nucleotides 1337, 1400, 1500 and near the 3' end of the RNA. The association of 30S and 50S subunits causes further protections at several nucleotides and some enhanced reactivities that can be interpreted in terms of subunits interface and allosteric transitions. The binding of E. coli tRNA-Phe to the 70S ribosome results in message-independent (positions 1337 and 1397) and message-dependent (1399-1400, 1491-1492 and 1505) protections. A third class of protection (1344-1345, 1393-1395, 1403-1409, 1412-1414, 1504, 1506-1507 and 1517-1519) is observed in message-directed 30S subunits, which are induced by both tRNA binding and 50S subunit association. This extensive reduction of reactivity most probably reflects an allosteric transition rather than a direct shielding.
The stable intermediates formed in the reaction of cytosine, cytidine and adenosine with chloracetaldehyde were isolated. The -CH2CH/OH/- bridge between the exo and endo nitrogen atoms of the parent base was found in these compounds by means of PMR spectroscopy. Their acid-induced dehydration resulted in formation of appropriate ethenoderivatives. The rate constants of the intermediate formation and its dehydration were found to be 38x10(-4) and 47x10(-4) /min-1/ for adenosine, and 33x10(-4) and 10x10(-4) /min-1/ for cytidine. The PH range of 4.5--5.0 was found to be optimum for both adenosine and cytidine reactions. The quantitative modification of these two nucleosides in the presence of guanosine may be achieved with high selectivity only at a low pH of 3.0--4.0 N6-methyladenosine and N4-methylcytidine react quantitatively with chloroacetaldehyde and the reaction rate is higher than in the case of the parent nucleosides. The structure of the reaction products was assigned on the basis of PMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.