Plugs 1 and 2 are safe and effective devices that can be used in a variety of blood vessels in patients with CCVD. Plug 2 is particularly useful in closure of high-flow, tubular structures, especially type C PDA's.
Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which were performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.
Patients with cystic fibrosis (CF) are at risk for recurrent pulmonary infections due to increased viscosity of airway secretions, leading to persistent colonization with pathogenic bacteria, including nontuberculous mycobacteria (NTM). Extensive antibiotic use for treatment of infections has led to increasing antimicrobial resistance, which is a significant barrier to the treatment of NTMs. We examined the in vitro activity of several antibiotics against a selection of the most drug-resistant clinical isolates of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium avium complex recovered from CF patients at our institution, as well as paired combinations of antibiotics against a subset of M. abscessus strains, to determine whether they exhibit synergy in inhibiting bacterial growth. Most isolates displayed resistance to at least six of the nine antibiotics tested for which phenotypic interpretation is available, and elevated minimum inhibitory concentrations (MICs) were observed for many of the other drugs. The major exception was clofazimine, which had relatively low MICs for most isolates across all species. When synergy testing was performed by using paired combinations of drugs, clofazamine and clarithromycin exhibited 100% synergy for all combinations tested, as did amikacin, with the exception of one isolate. These results suggest that synergistic antibiotic combinations are capable of overcoming drug resistance in vitro, and laboratories might consider implementation of synergy testing in multidrug-resistant (MDR)-NTM organisms to guide treatment decisions in the setting of extensive antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.