The aim of this paper was the analytical evaluation of human milk fat substitutes (HMFS) by the calorimetric and spectroscopic methods. The HMFS were obtained by enzymatic interesterification of blend of lard or milk fat with rapeseed oil and concentrate of fish oil. The enzymatic reactions were carried out at 60, 70, and 80°C for 2 h. A commercially immobilized 1,3-specific lipase, Lipozyme RM IM, was used as a biocatalyst. Oxidative stability of HMFS was determined using the calorimetric method. The oxidative induction time was obtained from the pressure differential scanning calorimetry curves. Peroxide value (PV) and anisidine value were determined using spectroscopic method. Interesterification caused a decrease in oxidative stability. Samples with lower induction times were characterized by higher PV. There was also a strong relation between total polar compound content and induction time. The induction times obtained for analyzed fats can be used as primary parameters for the assessment of the resistance of tested fats to their oxidative decomposition.
The aim of this paper was to assess the oxidative stability of structured lipids synthesized by enzymatic interesterification of a blend of lard and rapeseed oil with concentrates of n -3 fatty acids. Differential scanning calorimetry was used to evaluate the oxidation induction time of interesterified fats as a parameter assessing resistance of tested fats to their thermal-oxidative decomposition. Moreover, the IR spectra registered in the classic spectral range (4000-400 cm -1 ) were used to differentiate the samples of interesterified fats. The results show that the interesterification process decreased the induction time. Increased content polar fraction in the interesterified fatty product can reduce its resistance to oxidation. FT-IR data of selected spectral ranges correlate with the value of induction time at a statistically significant level. This is a proof that chemical changes occurring during different treatments of the starting mixture can be monitored by FT-IR spectroscopy. Moreover, obtained correlations can be used for the evaluation of an induction value of an unknown oil sample.
The influence of adverse conditions of environment in the case of baby formulas, which are multiple mixtures, should be minimised. Water activity (a w ) and moisture content, correlated through sorption isotherms, and glass transition temperature have been considered relevant parameters to describe food stability. The aim of the study was to analyse water activity and glass transition temperature as the function of water content for samples of baby formulas. Three types of baby formulas (mixture, agglomerate, coated agglomerate) were determined by sorption isotherms, DSC and MDSC. DSC curves of mixture, agglomerate and coated agglomerate did not show differences in shape and course. The glass transition temperature of powders stored at different water activities was measured and it decreased with the increase in moisture content, confirming the strong plasticising effect of water on this property. Critical water activities varied from 0.14 to 0.68 and critical moisture contents varied from 0.032 to 0.062 g g -1 powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.