The oxidative dehydrogenation of alicyclic diene hydrocarbons refers to scarcely studied heterogeneous catalytic reactions which proceed with the participation of oxygen. The dehydrogenation of methylcyclopentane is an endothermic reaction. To improve the reaction kinetics, this research was to develop a structured catalyst by conductive metals (Cu, Zn, Co, Cr) support which could hold an adherent catalytic layer. The active phase was impregnated onto these support metals and the developed catalyst was tested for the dehydrogenation of methylcyclopentane. The catalyst preparation involved three main key steps which were support oxidative reaction, loading of active particles on the catalyst surface, preparation of an active catalyst layer on the surface finally bringing the catalyst into the active phase. Different types of catalyst activation and deactivation mechanisms stability have been studied in this investigation. The advantage of this works, the oxidative dehydrogenation of methylcyclopentane is that it occurs at the expense of oxygen in the air. The zeolite structure study helped identify the effect of the combination of catalysts, and adsorption of metals on clinoptilolite and dispersion on the selectivity of the catalyst particles. Numerical values of the kinetic parameters were calculated
Selective C−C-and C−H-bond activations are an important catalytic process to produce various valueadded hydrocarbons oxidative dehydrogenation processes. For producing desired product with a high yield control of reaction pathway through the design of catalyst, fundamental understanding and clarification of reaction mechanism are prerequisite. In this work, we designed heterogeneous catalysts by combining {Cu 2+ (0.5 mas.%), Zn 2+ (0.2 mas.%), Co 2+ (0.1 mas.%), Cr 3+ (0.1 mas.%)} and clinoptilolite zeolites particles for oxidative dehydrogenation reaction of methylcyclopentane. Depending on the catalyst combination, the reaction pathways of dehydrogenation, ring-opening with isomerization, and ringenlargement with hydrogenation and dehydrogenation of C 5 -cyclic ring to C 6 -cyclic ring (i.e., cyclohexane and benzene) can be controlled to produce various products with high yields. The conversion of methylcyclopentane was investigated over HY zeolite at 360 0 C. Catalytic activity of the clinoptilolite in the reaction of selective oxidative dehydrogenation of methylcyclopentane into methylcyclopentadiene has been measured experimentally. Addition of Zn increases the stability of catalytic activity and induces distinct selectivity changes. When the Zn content is increased, dehydrogenation of methylcyclopentane to methylcylopentadiene goes through a maximum and deep dehydrogenation of methylcylopentane to benzene remains roughly constant. This study would provide practical and fundamental insight for design of heterogeneous catalyst for controlling reaction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.