Homotopy perturbation method is combined with Laplace transformation to obtain approximate analytical solutions of non-linear differential equations. An example is given to elucidate the solution process and confirm reliability of the method. The result indicates superiority of the method over the conventional homotopy perturbation method due its flexibility in choosing its initial approximation.
Equation of motion of a free particle in a space of constant curvature applies to many fields, such as the fixed reduction of the second member of the Burgers classes, the study of fusion of pellets, equations of Yang-Baxter, the concept of univalent functions as well as spheres of gaseous stability to mention but a few. In this study, the authors want to examine the linearization of the said equation using both point and non-point transformation methods. As captured in the title, the methods under examination here are the differential forms (DF) and the generalized Sundman transformations (GST), which are point and non-point transformation methods respectively. The comparative analysis of the solutions obtained via the two linearizability methods is also taken into account.
In the search for causes and cures of cancer diseases, many mathematical models developed have resulted in systems of nonlinear stiff ordinary differential equations. With these models, many numerical estimates of biological knowledge of the parameters have been obtained, a number of phenomena interpreted, and predictions were made in order to gain further knowledge of cancer development and possible treatment. In this study, numerical simulations of the models were performed using continuous block implicit hybrid methods and the results obtained support the theoretical and clinical findings. We analyzed the interactions among the various tumor cell populations and present the results graphically. From the graphical representation of results, one can clearly see the effects of all the tumor cell populations involved in the competition, as well as the effects of some treatments by the applications of some therapeutic agents which have been heavily used in the clinical treatments of breast cancer. The treatments in the past were mostly conventional chemotherapies, which were used either singly (alone) or in combination with each other or other therapies, and all played vital roles, except for the side effects that these therapies incur in normal tissues and organs. Thus, from recent research works, it is now clear that in many cases they do not represent a complete cure. Therefore, the need to address not only the preventative measures of breast cancer, but also more successful treatment, is clear, and can be successfully achieved to increase the survival rate of breast cancer patients.
The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
- Linear subspace of solution is applied to Boussinesq and Kadomtseve-Petviashvili (KP) equations using Hirota bilinear transformation. A sufficient and necessary condition for the existence of linear subspaces of exponential travelling wave solutions to Hirota bilinear equations is applied to show that multivariate polynomials whose zeros form a vector space can generate the desire Hirota bilinear equations with given linear subspaces of solutions and formulate such multivariate polynomials by using multivariate polynomials which have one and only one zero.Keywords: Hirota bilinear form, solton solution, N-wave solution, linear subspaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.