It is shown that the dilatational terms that need to be modelled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of the compressible velocity field, which generates these dilatational terms, is explored by asymptotic analysis of the compressible Navier-Stokes equations in the case of homogeneous turbulence. The lowest-order equations for the compressible field are solved and explicit expressions for some of the associated one-point moments are obtained. For low Mach numbers, the compressible mode has a fast timescale relative to the incompressible mode. Therefore, it is proposed that, in moderate Mach number homogeneous turbulence, the compressible component of the turbulence is in quasi-equilibrium with respect to the incompressible turbulence. A non-dimensional parameter which characterizes this equilibrium structure of the compressible mode is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scalesimilarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid.scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 960.' rid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence conducted on a coarse 321 grid -is sh6wn to yield results that are in excellent agreement with the fine grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.