Abstract-This paper presents a comparative review study on ultra-wideband (UWB) antenna technology for Ground Penetrating Radar (GPR) applications. The proposed antenna designs for UWB ground penetrating radar include a bow-tie antennas, Vivaldi antennas, horn antennas, planar antennas, tapered slot antennas, dipole antennas, and spiral antennas. Furthermore a comprehensive study in terms of operating frequency range, gain and impedance bandwidth on each antenna is performed in order to select a suitable antenna structure to analyze it for GPR systems. Based on the design comparison, the antenna with a significant gain and enhanced bandwidth has been selected for future perspective to examine the penetration depth and resolution imaging, simultaneously suitable for GPR detection applications. Three different types of antennas are chosen to be more suitable from the final comparison which includes Vivaldi, horn and tapered slot antennas. On further analysis a tapered slot antenna is a promising candidate as it has the ability to address the problems such as penetration depth and resolution imaging in GPR system due to its directional property, high gain and greater bandwidth operation, both in the lower and higher frequency range.
An investigation for the enhancement strategy of bandwidth performance and analysis of different types of losses associated with reflectarray antennas is presented in this paper. Studies are carried out using different commercially available dielectric materials with dielectric permittivity ( r ) values ranging from 2.08 to 13 and loss tangent (tan ) ranging from 0.0003 to 0.025. The performance of different dielectric materials for the design of infinite reflectarray is analyzed in terms of bandwidth, reflection loss and Figure of Merit (FOM). Bandwidth of patch element unit cell at different levels are observed and it has been shown that 10% bandwidth varies from 84 MHz to 360MHz and 20% bandwidth varies from 126 MHz to 540MHz based on the selection of dielectric substrate for reflectarray antenna design. Moreover it has been demonstrated that the reflection loss of the reflectarray antenna can be factorized into dielectric loss and conductor loss which depends on the material properties employed for the design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.