Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.
Aims/hypothesis Transcription factor E3 (TFE3) has been shown to increase insulin sensitivity by activating insulinsignalling pathways. However, the role of TFE3 in glucose homeostasis is not fully understood. Here, we explored the possible therapeutic potential of TFE3 for the control of hyperglycaemia using a streptozotocin-induced mouse model of diabetes. Methods We achieved overabundance of TFE3 in streptozotocin mice by administering an adenovirus (Ad) or adenoassociated virus serotype 2 (AAV2). We also performed an oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To explore molecular mechanisms of blood glucose control by TFE3, transcriptional studies on the regulation of genes involved in hepatic glucose metabolism were performed using quantitative real-time PCR and chromatin immunoprecipitation assay. The binding site of TFE3 in the liver Gck gene promoter was identified using deletion and site-specific mutation studies. Results Overabundance of TFE3 resulted in reduced hyperglycaemia as shown by the OGTT and ITT in streptozotocin-treated mice. We observed that TFE3 can upregulate Gck in a state of insulin deficiency. However, glucose-6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase mRNA levels were decreased by Admediated overexpression of Tcfe3. Biochemical studies revealed that the anti-hyperglycaemic effect of TFE3 is due to the upregulation of Gck. In primary cultured hepatocytes, TFE3 increased expression of Gck mRNA. Conversely, small interfering RNA-mediated knockdown of TFE3 resulted in a decrease in Gck mRNA. Conclusions/interpretation This study demonstrates that TFE3 counteracts hyperglycaemia in streptozotocin-treated mice. This effect could be due to the upregulation of Gck by binding of TFE3 to its cognitive promoter region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.