Identifying the small molecules that permit precise regulation of embryonic stem (ES) cell proliferation should further support our understanding of the underlying molecular mechanisms of self renewal. In the present study, we showed that PGE(2) increased [(3)H]-thymidine incorporation in a time and dose dependent manner. In addition, PGE(2) increased the expression of cell cycle regulatory proteins, the percentage of cells in S phase and the total number of cells. PGE(2) obviously increased E-type prostaglandin (EP) receptor 1 mRNA expression level compare to 2, 3, 4 subtypes. EP1 antagonist also blocked PGE(2)-induced cell cycle regulatory protein expression and thymidine incorporation. PGE(2) caused phosphorylation of protein kinase C, Src, epidermal growth factor (EGF) receptor, phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation, and p44/42 mitogen-activated protein kinase (MAPK), which were blocked by each inhibitors. In conclusion, PGE(2)-stimulated proliferation is mediated by MAPK via EP1 receptor-dependent PKC and EGF receptor-dependent PI3K/Akt signaling pathways in mouse ES cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.