We study the performance of TCP Westwood (TCPW), a new TCP protocol with a sender-side modification of the window congestion control scheme. TCP Westwood controls the window using end-to-end rate estimation in a way that is totally transparent to routers and to the destination. Thus, it is compatible with any network and TCP implementation. The key innovative idea is to continuously estimate, at the TCP sender, the packet rate of the connection by monitoring the ACK reception rate. The estimated connection rate is then used to compute congestion window and slow start threshold settings after a congestion episode. Resetting the window to match available bandwidth makes TCPW more robust to sporadic losses due to wireless channel problems. These often cause conventional TCP to overreact, leading to unnecessary window reduction. Experimental studies of TCPW show significant improvements in throughput performance over Reno and SACK, particularly in mixed wired/wireless networks over high-speed links. The contributions of this paper include a model for fair and friendly sharing of the bottleneck link and a Markov Chain performance model in presence of link errors/loss. TCPW performance is compared to that of TCP Reno, and analytic results are validated against simulation results. Internet and laboratory measurements using a Linux TCPW implementation are also reported, providing further evidence of the gains achievable via TCPW.
Abstract. The majority of Internet users rely on the Transmission Control Protocol (TCP 1 ) to download large multimedia files from remote servers (e.g. P2P file sharing). TCP has been advertised as a fair-share protocol. However, when session round-trip-times (RTTs) radically differ from each other, the share (of the bottleneck link) may be anything but fair. This motivates us to explore a new TCP, TCP Libra 2 , that guarantees fair sharing regardless of RTT. The key element of TCP Libra is the unique window adjustment algorithm that provably leads to RTT-independent throughput, yet converging to the fair share. We position TCP Libra in a non-linear optimization framework, proving that it provides fairness (in the sense of minimum potential delay fairness) among TCP flows that share the same bottleneck link. Equally important are the friendliness of Libra towards legacy TCP and the throughput efficiency.TCP Libra is source only based and thus easy to deploy. Via analytic modeling and simulations we show that TCP Libra achieves fairness while maintaining efficiency and friendliness to TCP New Reno. A comparison with other TCP versions that have been reported as RTT-fair in the literature is also carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.