Abnormal elevation of hepatic gluconeogenesis is central to the onset of hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). Metformin corrects hyperglycaemia through inhibition of gluconeogenesis, but its mechanism of action is yet to be fully described. SIRT1 and GCN5 (listed as KAT2A in the MGI Database) have recently been identified as regulators of gluconeogenic gene expression through modulation of levels and activity of the coactivators cAMP-response element binding protein-regulated transcription coactivator 2 (TORC2 or CRTC2 as listed in the MGI Database) and peroxisome proliferator-activated receptor-g coactivator-1a (PGC1a or PPARGC1A as listed in the MGI Database). We report that in db/db mice, metformin (250 mg/kg per day; 7 days) increases hepatic levels of GCN5 protein and mRNA compared with the untreated db/db mice, as well as increases levels of SIRT1 protein and activity relative to controls and untreated db/db mice. These changes were associated with reduced TORC2 protein level and decreased gene expression and activation of the PGC1a gene target phosphoenolpyruvate carboxykinase, and lower plasma glucose and insulin. Inhibition of SIRT1 partially blocked the effects of metformin on gluconeogenesis. SIRT1 was increased through an AMP-activated protein kinase-mediated increase in gene expression of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the salvage pathway for NAD C . Moreover, levels of GCN5 were dramatically reduced in db/db mice compared with the controls. This indicates that loss of GCN5-mediated inhibition of gluconeogenesis appears to constitute a major mechanism for the onset of abnormally elevated hepatic glucose production in db/db mice. In conclusion, induction of GCN5 and SIRT1 potentially represents a critical mechanism of action of metformin. In addition, these data identify induction of hepatic GCN5 as a potential therapeutic strategy for treatment of T2DM.
Residual kidney function is important for patient and technique survival in peritoneal dialysis (PD). Biocompatible dialysis solutions are thought to improve function and viability of peritoneal mesothelial cells and to preserve residual renal function (RRF). We conducted a randomized controlled study comparing use of biocompatible (B) with standard (S) solutions in 93 incident PD patients during a 1-year period. The demographics, comorbidities, and RRF of both groups were similar. At 3 and 12 months, 24-h urine samples were collected to measure volume and the mean of urea and creatinine clearance normalized to body surface area. Surrogate markers of fluid status, diuretic usage, C-reactive protein concentration, peritonitis episodes, survival data, and peritoneal equilibrium tests were also collected. Changes in the normalized mean urea and creatinine clearance were the same for both groups, with no significant differences in secondary end points. Despite non-randomized studies suggesting benefits of these newer biocompatible solutions, we could not detect any clinically significant advantages. Additional studies are needed to determine if advantages are seen with longer term use.
Chronic fructose feeding causes severe islet dysfunction in mice. Onset of beta cell failure in FRD-fed mice may occur via lowered secretion of eNAMPT, leading to increased islet inflammation and impaired beta cell function. Administration of exogenous NMN to FRD-fed mice corrects inflammation-induced islet dysfunction. Modulation of this pathway may be an attractive target for amelioration of islet dysfunction associated with inflammation.
Aims/hypothesis Sirtuin (SIRT)3 is a mitochondrial protein deacetylase that regulates reactive oxygen species (ROS) production and exerts anti-inflammatory effects. As chronic inflammation and mitochondrial dysfunction are key factors mediating pancreatic beta cell impairment in type 2 diabetes, we investigated the role of SIRT3 in the maintenance of beta cell function and mass in type 2 diabetes. Methods We analysed changes in SIRT3 expression in experimental models of type 2 diabetes and in human islets isolated from type 2 diabetic patients. We also determined the effects of SIRT3 knockdown on beta cell function and mass in INS1 cells. Results SIRT3 expression was markedly decreased in islets isolated from type 2 diabetes patients, as well as in mouse islets or INS1 cells incubated with IL1β and TNFα. SIRT3 knockdown in INS1 cells resulted in lowered insulin secretion, increased beta cell apoptosis and reduced expression of key beta cell genes. SIRT3 knockdown also blocked the protective effects of nicotinamide mononucleotide on proinflammatory cytokines in beta cells. The deleterious effects of SIRT3 knockdown were mediated by increased levels of cellular ROS and IL1β. Conclusions/interpretation Decreased beta cell SIRT3 levels could be a key step in the onset of beta cell dysfunction, occurring via abnormal elevation of ROS levels and amplification of beta cell IL1β synthesis. Strategies to increase the activity or levels of SIRT3 could generate attractive therapies for type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.